(满分13分)解:⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS). ………………5分
⑵①当M点落在BD的中点时,AM+CM的值最小.………………7分
②如图,连接CE,当M点位于BD与CE的交点处时,

AM+BM+CM的值最小. ………………9分
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM. ………………10分
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.……11分
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=

x,EF=

.
在Rt△EFC中,
∵EF
2+FC
2=EC
2,
∴(

)
2+(

x+x)
2=

. ………………12分
解得,x=

(舍去负值).
∴正方形的边长为

.………………13分