精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,ABDC,AB=,DC=,高CE=,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=     ;AC=    
(2)若S2=3S1,求x;
(3)设S2=mS1,求m的变化范围.

解:(1)过点C作CK∥BD交AB的延长线于K,
∵CD∥AB,
∴四边形DBKC是平行四边形,
∴BK=CD=,CK=BD,
∴AK=AB+BK=3+=4
∵四边形ABCD是等腰梯形,
∴BD=AC,
∴AC=CK,
∴BK=EK=AK=2=CE,
∵CE是高,
∴∠K=∠KCE=∠ACE=∠CAE=45°,
∴∠ACK=90°,
∴∠AHB=∠ACK=90°,
∴AC=AK·cos45°=4×=4;
故答案为:90°,4;
(2)直线移动有两种情况:0<x<≤x≤2.
①当0<x<时,
∵MN∥BD,
∴△AMN∽△ARQ,△ANF∽△QG,
=4,
∴S2=4S1≠3S1
②当≤x≤2时,
∵AB∥CD,
∴△ABH∽△CDH,
∴CH:AH=CD:AB=DH:BH=1:3,
∴CH=DH=AC=1,AH═BH=4﹣1=3,
∵CG=4﹣2x,AC⊥BD,
∴S△BCD=×4×1=2,
∵RQ∥BD,
∴△CRQ∽△CDB,
∴S△CRQ=2×(2=8(2﹣x)2
∵S梯形ABCD=(AB+CD)·CE
=×(3+)×2=8,
S△ABD=AB·CE=×3×2=6,
∵MN∥BD,
∴△AMN∽△ADB,

∴S1=x2,S2=8﹣8(2﹣x)2
∵S2=3S1
∴8﹣8(2﹣x)2=3×x2
解得:x1=(舍去),x2=2,
∴x的值为2;
(3)由(2)得:
当0<x<时,m=4,
≤x≤2时,
∵S2=mS1
∴m==
=﹣+﹣12
=﹣36(2+4,
∴m是的二次函数,
≤x≤2时,即当时,m随的增大而增大,
∴当x=时,m最大,最大值为4,
当x=2时,m最小,最小值为3,
∴m的变化范围为:3≤m≤4.













练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案