精英家教网 > 初中数学 > 题目详情
(2010•厦门)截至今年6月1日,上海世博会累计入园人数超过8 000 000.将8 000 000用科学记数法表示为   
【答案】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
解答:解:8 000 000=8×106
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•厦门)某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按1.8元收费;如果超过15立方米,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元计算.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,则该户一月份用水量是
20
20
立方米.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•厦门)在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2010•厦门)在平面直角坐标系中,点O是坐标原点、已知等腰梯形OABC,OA∥BC,点A(4,0),BC=2,等腰梯形OABC的高是1,且点B、C都在第一象限.
(1)请画出一个平面直角坐标系,并在此坐标系中画出等腰梯形OABC;
(2)直线与线段AB交于点P(p,q),点M(m,n)在直线上,当n>q时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2010•厦门)在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年福建省厦门市中考数学试卷(解析版) 题型:解答题

(2010•厦门)在平面直角坐标系中,点O是坐标原点、已知等腰梯形OABC,OA∥BC,点A(4,0),BC=2,等腰梯形OABC的高是1,且点B、C都在第一象限.
(1)请画出一个平面直角坐标系,并在此坐标系中画出等腰梯形OABC;
(2)直线与线段AB交于点P(p,q),点M(m,n)在直线上,当n>q时,求m的取值范围.

查看答案和解析>>

同步练习册答案