分析 作点F关于AD的对称点G,过G作GN⊥AE与N,交AD于M,则GN的长度等于MN+MF的最小值,根据对称的性质得到∠DMF=∠GMD,根据余角的性质得到∠FMD=∠BAE=∠AMN,根据相似三角形的性质和勾股定理即可得到结论.
解答
解:作点F关于AD的对称点G,过G作GN⊥AE与N,交AD于M,
则GN的长度等于MN+MF的最小值,
∵△DGM≌△DGF,
∴∠DMF=∠GMD,
∵∠GMD=∠AMN,
∵∠AMN+∠MAN=∠MAN+∠BAE=90°,
∴∠FMD=∠BAE=∠AMN,
∴△ABE∽△DMF∽△AMN,
∴$\frac{AB}{BE}=\frac{DM}{DF}$,
∵AB=4,
∴BE=2,
∵DF=1,
∴DM=2,
∴AM=2,
∵$\frac{AN}{MN}=\frac{BE}{AB}$=$\frac{1}{2}$,
∴MN=$\frac{4\sqrt{5}}{5}$,
∵GM=$\sqrt{D{G}^{2}+D{M}^{2}}$=$\sqrt{5}$,
∴GN=GM+MN=MN+MF=$\frac{9\sqrt{5}}{5}$.
∴MN+MF的最小值为$\frac{9\sqrt{5}}{5}$,
故答案为:$\frac{9\sqrt{5}}{5}$.
点评 本题考查了轴对称-最短距离问题,相似三角形的判定和性质,正确的确定M,N的位置是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 12 | B. | 15 | C. | 18 | D. | 20 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com