精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,已知点坐标为(2,4),直线轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;

(2)设抛物线顶点的横坐标为,当为何值时,线段最短;

(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.

 

【答案】

(1);(2)当时,PB最短;(3)抛物线上存在点

使△与△的面积相等.

【解析】

试题分析:解:(1)设所在直线的函数解析式为

(2,4),∴, ,

所在直线的函数解析式为. 2分

(2)∵顶点M的横坐标为,且在线段上移动,

(0≤≤2).

∴顶点的坐标为(,).

∴抛物线函数解析式为

∴当时,(0≤≤2).

, 又∵0≤≤2,

∴当时,PB最短.         6分

(3)当线段最短时,此时抛物线的解析式为.

假设在抛物线上存在点,使. 设点的坐标为().

①当点落在直线的下方时,过作直线//,交轴于点

,∴,∴点的坐标是(0,).

∵点的坐标是(2,3),∴直线的函数解析式为.

,∴点落在直线上.

=.解得,即点(2,3).

∴点与点重合.

∴此时抛物线上不存在点,使△与△的面积相等.  7分

②当点落在直线的上方时,

作点关于点的对称称点,过作直线//,交轴于点

,∴

∴、E、D的坐标分别是(0,1),(2,5),

∴直线函数解析式为.

,∴点落在直线上.

=.

解得:.

代入,得.

∴此时抛物线上存在点… 9分

使△与△的面积相等.  

综上所述,抛物线上存在点

使△与△的面积相等. 10分

考点:抛物线

点评:本题考查求函数解析式和抛物线的知识,会用待定系数法求函数解析式,对抛物线的性质的运用,是解决本题的关键

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案