【题目】如图,已知
中,
,
,
,将
绕点
顺时针旋转得到
,点
、
分别为
、
的中点,若点
刚好落在边
上,则
______.
![]()
【答案】![]()
【解析】
根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,
的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.
如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,
在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,
∵D为AB的中点,
∴CD=
,
由旋转可得,∠MCN=90°,MN=10,
∵E为MN的中点,
∴CE=
,
∵DM⊥BC,DC=DB,
∴CM=BM=
,
∴EM=CE-CM=5-3=2,
∵DM=
,
∴由勾股定理得,DE=
,
∵CD=CE=5,CN⊥DE,
∴DN=EN=
,
∴由勾股定理得,CN=
,
∴sin∠DEC=
.
![]()
故答案为:
.
科目:初中数学 来源: 题型:
【题目】某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.
(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;
(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A,B两个探测点探测到C处有生命迹象.已知A,B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:
≈1.41,
≈1.73)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数频率 | 频数 |
1 |
| 2 | 0.05 |
2 |
| 4 | 0.10 |
3 |
|
| 0.2 |
4 |
| 10 | 0.25 |
5 |
|
|
|
6 |
| 6 | 0.15 |
合计 | 40 | 1.00 |
![]()
根据表中提供的信息解答下列问题:
(1)频数分布表中的
,
,
;
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 ,72分及以上为及格,预计及格的人数约为 ,及格的百分比约为 ;
(3)补充完整频数分布直方图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )
![]()
A. ①③B. ②④C. ①②④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三个大小一样的正六边形,可按下列方式进行拼接:
方式1:如图1;
方式2:如图2;
![]()
若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有
个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则
的最大值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,抛物线
的对称轴为直线
,将直线
绕着点
顺时针旋转
的度数后与该抛物线交于
两点(点
在点
的左侧),点
是该抛物线上一点
![]()
(1)若
,求直线
的函数表达式
(2)若点
将线段分成
的两部分,求点
的坐标
(3)如图②,在(1)的条件下,若点
在
轴左侧,过点
作直线
轴,点
是直线
上一点,且位于
轴左侧,当以
,
,
为顶点的三角形与
相似时,求
的坐标
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com