精英家教网 > 初中数学 > 题目详情
(2013•北仑区二模)如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连接CD,G是CD的中点,连接0G.若OG•DE=3(2-
2
),则⊙O的面积为
分析:构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.
解答:解:如图,过点O作BD的垂线,垂足为H,则H为BD的中点.
∴OH=
1
2
AD,即AD=2OH,
又∵∠CAD=∠BAD?CD=BD,∴OH=OG.
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽Rt△ADB,
BD
AD
=
DE
BD
,即BD2=AD•DE.
BD2=AD•DE=2OG•DE=6(2-
2
).又BD=FD,
∴BF=2BD,
∴BF2=4BD2=24(2-
2
)①,AC=x,则BC=x,AB=
2
x,
∵AD是∠BAC的平分线,
∴∠FAD=∠BAD.
在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD(ASA).
∴AF=AB=
2
BD=FD.
∴CF=AF-AC=
2
x-x=(
2
-1)x.
在Rt△BCF中,由勾股定理,得
BF2=BC2+CF2=x2+[(
2
-1)x]2=2(2-
2
)x2
由①、②,得2(2-
2
)x2=24(2-
2
),
∴x2=12,解得x=2
3
或-2
3
(舍去),
∴AB=
2
x=
2
•2
3
=2
6

∴⊙O的半径长为
6

∴S⊙O=π•(
6
2=6π.
故答案为6π.
点评:本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、直角三角形斜边上的中线及圆周角定理等知识,综合性较强,解题时熟练运用垂径定理、勾股定理、相似三角形的判定与性质是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)在数-2,0,-
1
2
,2中,其中最小的数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北仑区二模)已知样本数据1,0,6,1,2,下列说法不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北仑区二模)割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.试用这个方法解决问题:如图,⊙的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北仑区二模)下列命题:
①40°角为内角的两个等腰三角形必相似;
②反比例函数y=-
2
x
,当x>-2时,y随x的增大而增大;
③两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.
④若圆的半径为5,AB、CD是两条平行弦,且AB=8,CD=6,则弦AC的长为
2
或5
2

⑤函数y=-(x-3)2+4(-1≤x≤4)的最大值是4,最小值是3.
其中真命题有(  )

查看答案和解析>>

同步练习册答案