精英家教网 > 初中数学 > 题目详情
甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.甲车离A地的路程s1(km)与行驶的时间t(h)之间的函数关系,如图中线段OP所示;乙车离A地的路程s2(km)与行驶的时间t(h)之间的函数关系,如图中线段MN所示,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:
(1)分别求出线段MN、OP的函数关系式;
(2)求出a的值;
(3)设甲、乙两车之间的距离为s(km),求s与甲车行驶时间t(h)的函数关系式,并求出s的最大值.
分析:(1)先确定出点M的坐标,然后利用待定系数法求一次函数解析式解答即可;
(2)先求出甲、乙的速度,然后根据乙的时间等于甲的时间减去多用的时间列出方程,解方程即可得到a的值;
(3)求出乙到达B地的时间,然后分四个阶段表示出甲、乙两车之间的距离,再根据一次函数的增减性求出各阶段时的最大值,即可得解.
解答:解:(1)由题意知,M(0.5,0),
设OP的解析式为S1=k1t,
则1.5k1=60,
解得k1=40,
∴S1=40t;
设MN的解析式为S2=k2t+b,
0.5k2+b=0
1.5k2+b=60

解得
k2=60
b=-30

所以,S2=60t-30,
因此,线段OP、MN表示的函数关系式分别为:S1=40t,S2=60t-30;

(2)由(1)得甲的速度为40千米/小时,乙的速度为60千米/小时,
根据题意得,
a
60
=
a
40
-1-0.5,
解得,a=180;

(3)乙到达B地的时间为:180÷60+0.5=3.5小时,
①当0≤t≤0.5时,s=S1=40t,最大值S=40×0.5=20km;
②当0.5<t≤1.5时,s=S1-S2=40t-(60t-30)=-20t+30,没有最大值;
③当1.5<t≤3.5时,s=S2-S1=60t-30-40t=20t-30,最大值S=20×3.5-30=40;
④当3.5<t≤4.5时,s=180-S1=180-40t,没有最大值;
当t=3.5时,s的值最大为:20×3.5-30=40.
点评:本题考查了一次函数的应用,主要利用了待定系数法求函数解析式,行程问题,以及利用一次函数的增减性求最大值,难点在于(3)要分段讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、实际运用
玉树地震牵挂着千家万户,某单位安排甲、乙两车先后分别以60km/h的速度从M地将一批救灾物质运往N地装备.两车出发后,发货站发现甲车遗漏一件物品,遂派丙车将遗漏物品送达甲车,丙车完成任务后即沿原路原速返回(物品交接时间不计).如图表示三辆车离M地的距离s(km)随时间t(min)变化的图象.请根据图象回答:
(1)说明图中点B的实际意义;
(2)丙车出发多长时间后追上甲车?
(3)丙车与乙车在距离M地多远处迎面相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)甲、乙两车从A地将一批物品匀速运往B地,已知甲出发0.5h后乙开始出发,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,请结合图中的信息解决如下问题:
(1)计算甲、乙两车的速度及a的值;
(2)乙车到达B地后以原速立即返回.
①在图中画出乙车在返回过程中离A地的距离S(km)与时间t(h)的函数图象;
②请问甲车在离B地多远处与返程中的乙车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州一模)有一批物资,由甲汽车从M地运往距M地180千米的N地.而甲车在驶往N地的途中发生故障,司机马上通知N地,并立即自查和维修.N地在接到通知后第12分钟时,立即派乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到N地,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达N地.下图是甲、乙两车离N地的距离y(千米)与时间x(小时)之间的函数图象.请结合图象信息解答下列问题:
(1)请直接在坐标系中的
纵轴填空为:120,横轴从左到右依次填空为:1.2;2.1
纵轴填空为:120,横轴从左到右依次填空为:1.2;2.1
内填上数据;
(2)求线段CD的函数解析式,并写出自变量x的取值范围;
(3)求乙车的行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•富顺县模拟)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇,乙车的速度为每小时120千米,下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.
(1)请将图中的
120
120
内填上正确的值,并直接写出甲车从A到B的行驶速度.
(2)求从甲车返回到乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.
(3)求出甲车返回时行驶速度及A、B两地的距离.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省连云港市灌云县穆圩中学中考数学模拟试卷(解析版) 题型:解答题

甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇,乙车的速度为每小时120千米,下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.
(1)请将图中的______内填上正确的值,并直接写出甲车从A到B的行驶速度.
(2)求从甲车返回到乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.
(3)求出甲车返回时行驶速度及A、B两地的距离.

查看答案和解析>>

同步练习册答案