精英家教网 > 初中数学 > 题目详情
如图,平面直角坐标系中,抛物线y=
12
x2-2x+3交y轴于点A.P为抛物线上一点,且与点A不重合.连接AP,以AO、AP为邻边作平行四边形OAPQ,PQ所在直线与x轴交于点B.设点P的横坐标为m.
(1)点Q落在x轴上时m的值.
(2)若点Q在x轴下方,则m为何值时,线段BQ的长取最大值,并求出这个最大值.
分析:(1)利用点Q落在x轴上时,PQ=3,得出
1
2
m2-2m+3=3,求出m的值即可;
(2)利用QB=QP-BP=3-(
1
2
m2-2m+3),利用m的取值范围,得出m的最值即可.
解答:解:(1)抛物线y=
1
2
x2-2x+3与y轴交于点A,
∴点A的坐标为(0,3).
∴OA=3.
∵四边形OAPQ为平行四边形,
∴QP=OA=3.
∴当点Q落在x轴上时,
1
2
m2-2m+3=3,
解得:m1=0,m2=4.
当m=0,点P与点A重合,不符合题意,舍去.
∴m=4.

(2)解法一:∵点P的横坐标为m,
∴BP=
1
2
m2-2m+3.
∴QB=QP-BP=3-(
1
2
m2-2m+3),
=-
1
2
m2+2m,
=-
1
2
(m-2)2+2,
∵点Q在x轴下方,
∴0<m<4.
∴m=2时,线段QB的长取最大值,最大值为2.

解法二:∵QP=3,QB=3-BP,
∴线段BP的长取最小值时,线段QB的长取最大值.
当点P为抛物线的顶点时,线段BP的长取最小值.
当x=-
b
2a
=2时,y=
4ac-b2
4a
=
1
2
×3-4
1
2
=1

∴线段BP的长最小值为1.
∴m=2时,线段QB的长取最大值,最大值为3-1=2.
点评:此题主要考查了二次函数的综合应用以及平行四边形的判定与性质,根据已知得出关于m的函数关系式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案