(1)证明:∵四边形ABCD为菱形,
∴AD∥BC.
∴∠OBP=∠ODQ
∵O是BD的中点,
∴OB=OD
在△BOP和△DOQ中,
∵∠OBP=∠ODQ,OB=OD,∠BOP=∠DOQ
∴△BOP≌△DOQ(ASA)
∴OP=OQ.
(2)解:如图,过A作AT⊥BC,与CB的延长线交于T.

∵ABCD是菱形,∠DCB=60°
∴AB=AD=4,∠ABT=60°
∴在Rt△ATB中,AT=ABsin60°=

TB=ABcos60°=2
∵BS=10,
∴TS=TB+BS=12,
在Rt△ATS中,
∴AS=

.
∵AD∥BS,
∴△AOD∽△SOB.
∴

,
则

,
∴

∵AS=

,
∴OS=

AS=

.
同理可得△ARD∽△SRC.
∴

,
则

,
∴

,
∴

.
∴OR=OS-RS=

.
分析:(1)求简单的线段相等,可证线段所在的三角形全等,即证△ODQ≌△OBP.
(2)首先求AS的长,要通过构建直角三角形求解;过A作BC的垂线,设垂足为T,在Rt△ABT中,易证得∠ABT=∠DCB=60°,又已知了斜边AB的长,通过解直角三角形可求出AT、BT的长;进而可在Rt△ATS中,由勾股定理求出斜边AS的值;由于四边形ABCD是菱形,则AD∥BC,易证得△ADO∽△SBO,已知了AD、BS的长,根据相似三角形的对应边成比例线段可得出OA、OS的比例关系式,即可求出OA、OS的长;同理,可通过相似三角形△ADR和△SCR求得AR、RS的值;由OR=OS-RS即可求出OR的长.
点评:此题考查了菱形的性质、全等三角形及相似三角形的判定和性质;(2)中能够正确的构建出直角三角形,求出AS的长是解答此题的关键.