精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,BD、CE是△ABC的高,DG⊥BC与CE交于F,GD的延长线与BA的延长线交于点H.
求证:GD2=GF•GH.
分析:先证△CGD∽△DGB,推出DG2=BG•CG,再证△CGF∽△HGB得到比例式,推出GF•GH=BG•GC,即可求出答案.
解答:证明:∵BD⊥AC,DG⊥BC,
∴∠DGC=∠DGB=90°,∠CDB=90°,
∴∠DCG+∠CDG=90°,∠CDG+∠BDG=90°,
∴∠DCG=∠BDG,
∵∠DGC=∠DGB,
∴△CGD∽△DGB,
DG
BG
=
CG
DG

∴DG2=BG•CG,
∵CE⊥AB,
∴∠ECB+∠CBE=90°,
又∠H+∠GBH=90°,
∴∠ECB=∠H,
∠FGC=∠HGB=90°,
∴△CGF∽△HGB,
GF
GB
=
GC
GH

∴GF•GH=BG•GC,
∴GD2=GF•GH.
点评:本题主要考查对相似三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,能求出DG2=BG•CG和GF•GH=BG•GC是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD是AC边上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD平分∠ABC,CE平分∠ACE,BD与CE交于点I,试说明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.
(1)求证:AB2=AE•AD;
(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BD、CE是△ABC的两条高,M是BC的中点.求证:ME=MD.

查看答案和解析>>

同步练习册答案