精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC边相切于点D,连接AD.
(1)求证:AD是∠BAC的平分线;
(2)若AC=3,tanB=
34
,求⊙O的半径.
分析:(1)连接OD.根据圆的半径都相等的性质及等边对等角的性质知:∠1=∠2;再由切线的性质及平行线的判定与性质证明∠1=∠3;最后由角平分线的性质证明结论;
(2)在Rt△ABC中,由“tanB=
3
4
,AC=3”求得BC=4,AB=5;然后在Rt△ODB中,利用∠B的正切值求得
OD
BD
=
3
4
;设一份为x,则OD=OA=3x,则BD=4x,OB=5x.列出关于x的方程,解方程即可.
解答:(1)证明:连接OD,
∴OD=OA,精英家教网
∴∠1=∠2,
∵BC为⊙O的切线,
∴∠ODB=90°,(1分)
∵∠C=90°,
∴∠ODB=∠C,
∴OD∥AC,
∴∠3=∠2,(2分)
∴∠1=∠3,
∴AD是∠BAC的平分线.(3分)

(2)解:在Rt△ABC中,∠C=90°,tanB=
3
4
,AC=3,
∴BC=4,AB=5,(4分)
在Rt△ODB中,tanB=
OD
BD
=
3
4

设一份为x,则OD=OA=3x,则BD=4x,OB=5x,
∴AB=8x,
∴8x=5,
解得x=
5
8

∴半径OA=
15
8
.(5分)
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,过点B作BD∥AC,且BD=2AC,连接AD.试判断△ABD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,OD∥AB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•丰台区一模)已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代数式表示AE;
(3)求y与x之间的函数关系式,并求出x的取值范围;
(4)设四边形DECF的面积为S,求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜边AB上的高CD.

查看答案和解析>>

同步练习册答案