精英家教网 > 初中数学 > 题目详情
如图,在等边三角形ABC中,AD=BE=CF,D、E、F不是各边的中点,AE、BF、CD分别交于P、M、H,如果把三个三角形全等叫做一组全等三角形,那么图中全等三角形有(  )
分析:由在等边三角形ABC中,AD=BE=CF,利用SAS即可判定△EBA≌△DAC≌△FCB,同理可得△DBC≌△FAB≌△ECA,然后证得∠BAE=∠ACD=∠CBF,AD=BE=CF,∠AEB=∠ADC=∠BFC,利用ASA可判定△ADH≌△CFM≌△BEP,即可得∠ABF=∠CAE=∠BCD,AB=AC=BC,BP=AH=CM,由SAS可判定△ABP≌△ACH≌△CBM,然后根据AAS即可判定△DBM≌△FAP≌△ECH.
解答:解:∵△BC是等边三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,
在△EBA和△DAC和△FCB中,
AB=AC=BC
∠ABE=∠DAC=∠FCB
BE=AD=CF

∴△EBA≌△DAC≌△FCB(SAS);
∵AB=AC=BC,AD=BE=CF,
∴BD=AF=EC,
同理:△DBC≌△FAB≌△ECA(SAS);
∴∠BAE=∠ACD=∠CBF,AD=BE=CF,∠AEB=∠ADC=∠BFC,
在△ADH和△CFM和△BEP中,
∠BAE=∠ACD=∠CBF
AD=CF=BE
∠ADC=∠BFC=∠AEB

∴△ADH≌△CFM≌△BEP(ASA),
∵∠ABF=∠CAE=∠BCD,AB=AC=BC,BP=AH=CM,
在△ABP和△ACH和△CBM中,
AB=AC=BC
∠ABF=∠CAE=∠BCD
BP=AH=CM

∴△ABP≌△ACH≌△CBM(SAS);
∵∠AHD=∠EHC,∠FMC=∠DMB,∠BPE=∠APF,∠AHD=∠FMC=∠BPE
∴∠EHC=∠DMB=∠APF
∵BD=AF=EC,∠DBM=∠FAP=∠ECH,
在△DBM和△FAP和△ECH中,
∠DMB=∠APF=∠BHC
∠DBM=∠FAP=∠ECH
BD=AF=EC

∴△DBM≌△FAP≌△ECH(AAS).
∴共5组.
故选B.
点评:此题考查了等边三角形的性质与全等三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等边三角形ABC的边BC、AC上分别取点D、E,使BD=CE,AD与BE相交于点P.则∠APE的度数为
 
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC中,从△BOF到△COD需要经过的变换是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=(  )
A、
M
2
B、
M
6
C、
M
8
D、
M
12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD,求证:△BDE为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边三角形△ABC中,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,且PR=PS,下面给出的四个结论:①点P在∠A的平分线上,②AS=AR,③QP∥AR,④△BRP≌△QSP,则其中正确的是(  )

查看答案和解析>>

同步练习册答案