精英家教网 > 初中数学 > 题目详情

已知等腰三角形一个外角等于120°,则它的顶角是(    )

A.60°             B.20°             C.60°或20°       D.不能确定

 

【答案】

A

【解析】

试题分析:因为等腰三角形一个外角等于120°,说明与它相邻的内角是60°,有一个角是60°的等腰三角形是等边三角形,由此可得出顶角是60°.

考点:等边三角形的判定定理

点评:此类试题需要进行简单的换算,学生应熟记等边三角形判定的相关定理及概念。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,△ABC是等边三角形,CD是AB边上的高,延长CB到E使BE=BD,连接DE精英家教网
(1)请你写出图中的一个等腰三角形(除△ABC外,不必说明理由);
(2)如果已知AC=2009cm,你能求出图中CE的长吗?试试看;
(3)把“CD是AB边上的高”改成什么条件仍能使(1)(2)成立?

查看答案和解析>>

科目:初中数学 来源: 题型:

10、给出下列结论:
①有一个角是100°的两个等腰三角形相似.
②三角形的内切圆和外接圆是同心圆.
③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.
④等腰梯形既是轴对称图形,又是中心对称图形.
⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.
⑥过直线外一点有且只有一条直线平行于已知直线.
其中正确命题有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•博野县模拟)阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于
2
2

请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:一张直角三角形纸片如图1放置在平面直角坐标系中,一条直角边OA落在x轴正半轴上,另一条直角边OB落在y轴正半轴上,且OA=8,OB=6.现再找一个与Rt△ABO有一条公共边且不重叠的三角形,使它们拼在一起后能构成一个大的等腰三角形.例如:如图2,△CBO与△ABO拼成等腰△ABC,则点C坐标为(-2,0).请直接写出除图2情况外,其他所有的所拼成的等腰三角形中除A、B、O三点外另一顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•盐城)已知:AB为⊙O的直径,P为AB弧的中点.
(1)若⊙O′与⊙O外切于点P(见图甲),AP、BP的延长线分别交⊙O′于点C、D,连接CD,则△PCD是
等腰直角
等腰直角
三角形;
(2)若⊙O′与⊙O相交于点P、Q(见图乙),连接AQ、BQ并延长分别交⊙O′于点E、F,请选择下列两个问题中的一个作答:
问题一:判断△PEF的形状,并证明你的结论;
问题二:判断线段AE与BF的关系,并证明你的结论.
我选择问题
,结论:
△PEF是等腰直角三角形
△PEF是等腰直角三角形

查看答案和解析>>

同步练习册答案