【题目】在平面直角坐标系
中,正方形ABCD的位置如图所示,点
的坐标为
,点
的坐标为
,延长
交
轴于点
,作正方形
,延长
交
轴于点
,作正方形
,…按这样的规律进行下去,第
个正方形的面积为_____________.
![]()
【答案】![]()
【解析】
推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出
,求出AB,BA1,求出边长A1C=
,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可.
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴
,
∵AB=AD=
∴BA1=
∴第2个正方形A1B1C1C的边长A1C=A1B+BC=
,
面积是
;
同理第3个正方形的边长是![]()
面积是
;
第4个正方形的边长是
,面积是
…,
第n个正方形的边长是
,面积是![]()
故答案为: ![]()
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B、C三点均在二次函数y=x2的图象上,M为线段AC的中点,BM∥y轴,且MB=2.设A、C两点的横坐标分别为t1、t2(t2>t1),则t2﹣t1的值为( )
![]()
A.3B.2
C.2
D.2![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(s,t)在反比例函数
(k为常数,k≠0)的图象上.
(1)当s=﹣1,t=3时,则k= ;
(2)当点A在第二象限时,将双曲线
(x<0)沿着y轴翻折,翻折后的曲线与原曲线记为曲线L,与过A点的直线y=b(b>0)交于点C,连接AO,过点O作AO的垂线与直线y=b交于点B.
![]()
①如图(1),当
时,求
值;
②如图(2),若A(﹣1,
),作直线x=n(n>0)交曲线L于G点,分别交射线AB,射线OB于点E,F,当
时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=
DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且AB=4
,AD=4
,则∠BCD的度数为( )
![]()
A.105°B.115°C.120°D.135°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号 | 活动类型 |
A | 经典诵读与写作 |
B | 数学兴趣与培优 |
C | 英语阅读与写作 |
D | 艺体类 |
E | 其他 |
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .
(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?
(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com