如图,点A、E、F、C在一条直线上,AE=CF,过点E、F分别作DE垂直AC,BF垂直AC ,若AB="CD" ,那么BD平分EF,请说明理由。![]()
由AE=CF可得AF=CE,再有AB=CD,∠CED=∠AFB=90°即可证得△ABF≌△CDE,可得DE=BF,再结合对顶角相等即可证得△EMD≌△FMB,从而证得结论.
【解析】
试题分析:∵AE=CF
∴AE+EF=CF+EF
即AF=CE
又∵AB="CD"
∠CED=∠AFB=90°
∴△ABF≌△CDE
∴DE=BF
又∵∠CED=∠AFB="90°"
∠EMD=∠FMB
∴△EMD≌△FMB
∴EM="FM"
即BD平分EF.
考点:全等三角形的性质和判定
点评:解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 2 |
| A、(0,0) | ||||||||
B、(
| ||||||||
| C、(1,1) | ||||||||
D、(
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com