精英家教网 > 初中数学 > 题目详情
如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB =" 2OC=" 3.

(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.
(1)由已知,OB=2OC=3
可得,拋物线y1=ax2-2ax+b经过B(3,0),C(0,)两点,
,∴
∴拋物线的解析式为y1=-x2+x+.          ---------4分
(2)作DN⊥AB,垂足为N.(如下图1)
y1= -x2+x+易得D(1,2), N(1,0),A(-1,0),B(3,0),
AB=4,DN=BN=2,DB=2
ÐDBN=45°.根据勾股定理有BD 2-BN 2="PD" 2-PN 2
∴(2)2-22=PD2-(1-x)2-----j
又ÐMPQ=45°=ÐMBP
∴△MPQ ∽ △MBP,∴PD2=DQ´DB=y2´2------k.
由j、k得y2=x2-x+.∵0≤x<3,
y2x的函数关系式为y2=x2-x+=(0≤x≤3).--------4分
(自变量取值范围没写,不扣分)


(3)假设E、F、H、G围成四边形的面积能为 (如图2)
∵点E、G是抛物线y1= -x2+x+= 分别与直线x=m,x= m+的交点
∴点E、G坐标为E(m,),G(m+).
同理,点F、H坐标为F(m,),H(m+).
∴EF=-[]=
GH=)-[]=
∵四边形EFHG是平行四边形或梯形,
∴S=+]×=
化简得
解得m=(都在0≤x≤3内)
所以,当m=时,E、F、H、G围成四边形的面积为.   --------4分解析:
通过B(3,0),C(0,)两点,求出拋物线的解析式,
(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根据勾股定理得jPD2-(1-x)2=4,又因为△MPQ ∽ △MBP所以kPD2=DQ´DB=y2´2,由j、k得y2x的函数关系式
(3)假设EFHG围成四边形的面积能为,通过y1求出E、G、F、H的坐标,求出EF、GH的长度,
通过四边形EFHG的面积求出m的值
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线的顶点为P(1,0),一条直线与抛物线相交于A(2,1),B(-
12
,m
)两精英家教网点.
(1)求抛物线和直线AB的解析式;
(2)若M为线段AB上的动点,过M作MN∥y轴,交抛物线于点N,连接NP、AP,试探究四边形MNPA能否为梯形?若能,求出此点M的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,抛物线的顶点为A(1,-4),且过点B(3,0).
(1)求该抛物线的解析式;
(2)将该抛物线向右平移几个单位,可使平移后的抛物线经过原点?并直接写出平移后抛物线与x轴的另一个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)已知,如图,抛物线的顶点为C(1,-2),直线y=kx+m与抛物线交于A、B两点,其中OA=3,B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式;
(2)设点P的横坐标为x,求点E坐标(用含x的代数式表示);
(3)点D是直线AB与这条抛物线对称轴的交点,是否存在点P,使得以点P、E、D为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)如图,抛物线的顶点为C(-1,-1),且经过点A、点B和坐标原点O,点B的横坐标为-3.
(1)求抛物线的解析式;
(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为
顶点的四边形为平行四边形,请直接写出点D的坐标;
(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案