精英家教网 > 初中数学 > 题目详情
如图,一次函数y=-
1
2
x+2
分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(1)∵一次函数y=-
1
2
x+2
分别交y轴、x轴于A、B两点,
∴x=0时,y=2,y=0时,x=4,
∴A(0,2),B(4,0),
将x=0,y=2代入y=-x2+bx+c得c=2,
将x=4,y=0,c=2代入y=-x2+bx+c,
得到b=
7
2

∴y=-x2+
7
2
x+2;

(2)∵作垂直x轴的直线x=t,在第一象限交直线AB于M,
∴由题意,易得M(t,-
1
2
t+2),N(t,-t2+
7
2
t+2),
从而得到MN=-t2+
7
2
t+2-(-
1
2
t+2)=-t2+4t(0<t<4),
当t=-
b
2a
=2时,MN有最大值为:
4ac-b2
4a
=4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为Α(1,0),B(3,0),
(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,与y轴的交点为C,试求四边形ΑBCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线y=
5
4
作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点F(1,
3
4
)
,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=
1
3
x2-2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,-4),连接PA,PB.有以下说法:
①PO2=PA•PB;
②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;
③当k=-
3
3
时,BP2=BO•BA;
④△PAB面积的最小值为4
6

其中正确的是______.(写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目
类别
年固定
成本
每件产品
成本
每件产品
销售价
每年最多可
生产的件数
A产品20m10200
B产品40818120
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计6≤m≤8.另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其自变量取值范围;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第8秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?(  )
A.第11秒B.第10秒C.第9秒D.第8秒

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+px+q的顶点M在第一象限,与x轴和y轴的正半轴分别交于点A、B,其中A的坐标为(2,0),且四边形AOMB的面积为
11
4
,求p、q的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,张大爷要围成一个矩形ABCD花圃.花圃的一边AD利用足够长的墙,另三边恰好用总长为36米的篱笆围成.设AB的长为x米,矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x为何值时,S有最大值?并求出最大值.
[参考公式:二次函数y=ax2+bx+c(a≠0),当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读并解答问题
用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.
(1)当x=______时,代数式-2(x-1)2+3有最______(填写大或小)值为______.
(2)当x=______时,代数式-2x2+4x+3有最______(填写大或小)值为______.
(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案