分析 过A作AC垂直于y轴,过B作BD垂直于y轴,易证△AOC∽△OBD,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠B的值,即OA与OB的比值,利用面积比等于相似比的平方,即可求出k值.
解答 解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,
∴∠AOC+∠OAC=90°,![]()
∵OA⊥OB,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵点A、B分别在反比例函数y=$\frac{1}{x}$(x>0),y=$\frac{k}{x}$(x>0)的图象上,
∴S△AOC=$\frac{1}{2}$,S△OBD=|$\frac{k}{2}$|,
∴S△AOC:S△OBD=1:|k|,
∴($\frac{OA}{OB}$)2=1:|k|,
则在Rt△AOB中,tanB=$\frac{OA}{OB}$=$\frac{\sqrt{3}}{3}$,
∴1:|k|=1:3,
∴|k|=3
∵y=$\frac{k}{x}$(x>0)的图象在第四象限,
∴k=-3,
∴y=$\frac{k}{x}$的表达式为:y=-$\frac{3}{x}$.
点评 本题考查了相似三角形的判定与性质,锐角三角函数定义,以及反比例函数k的几何意义,熟练掌握相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{31}{2}$,15 | B. | 15,$\frac{31}{2}$ | C. | 15,15 | D. | $\frac{31}{2}$,$\frac{31}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com