精英家教网 > 初中数学 > 题目详情
分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=
t(2t2+5t+5)(t-1)(2t2+2t+3)
t(2t2+5t+5)(t-1)(2t2+2t+3)
分析:可设(t+1)3=x,y=2+t++3t,将(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6变形为(2y-3x)(y-x)-x2的形式分解因式.
解答:解:设(t+1)3=x,y=2+t++3t,则
原式=[(4+2t+2t2)-3(1+3t+3t2+t3)],
=[(2+t+t2)-(1+3t+3t2+t3)]-[(t+1)3]2
=(2y-3x)(y-x)-x2
=2x2-5xy+2y2
=(2x-y)(x-2y),
=[2(t3+3t2+3t+1)-(t2+t+2)][(t3+3t2+3t+1)-2(t2+t+2)],
=(2t3+5t2+5t)(t3+t2+t-3),
=t(2t2+5t+5)(t-1)(2t2+2t+3).
故答案为:t(2t2+5t+5)(t-1)(2t2+2t+3).
点评:本题考查了用换元法分解因式,它能够把一些整式化繁为简,化难为易,对此应注意总结能用换元法分解因式的特点,寻找解题技巧.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6=________.

查看答案和解析>>

同步练习册答案