【题目】如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求过A、B、C三点的抛物线解析式;
(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.
![]()
![]()
![]()
图1 备用图
【答案】见解析
【解析】分析:(1)根据
求出点
的坐标,用待定系数法即可求出抛物线的解析式.
(2)分两种情况进行讨论即可.
(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形
是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
详解:(1)易证
,得
,
∴OC=2,∴C(0,2),
∵抛物线过点A(-1,0),B(4,0)
因此可设抛物线的解析式为
将C点(0,2)代入得:
,即
∴抛物线的解析式为
(2)如图2,
![]()
当
时,
则P1(
,2),
当
时,
∴OC∥l,
∴
,
∴P2H=
·OC=5,
∴P2 (
,5)
因此P点的坐标为(
,2)或(
,5).
(3)存在.
假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
如图3,
![]()
当平行四边形
是平行四边形时,M(
,
),
(
,
),
当平行四边形AONM是平行四边形时,M(
,
),N(
,
),
如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(
,m),则
![]()
∵点N在抛物线
上,
∴-m=-
·(-
+1)( -
-4)=-
,
∴m=
,
此时M(
,
), N(-
,-
).
综上所述,M(
,
),N(
,
)或M(
,
),N(
,
) 或 M(
,
), N(-
,-
).
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,高
、
相交于点
,
,且
.
(1)求线段
的长;
(2)动点
从点
出发,沿线段
以每秒 1 个单位长度的速度向终点
运动,动点
从 点
出发沿射线
以每秒 4 个单位长度的速度运动,
两点同时出发,当点
到达
点时,
两点同时停止运动.设点
的运动时间为
秒,
的面积为
,请用含
的式子表示
,并直接写出相应的
的取值范围;
(3)在(2)的条件下,点
是直线
上的一点且
.是否存在
值,使以点
为顶 点的三角形与以点
为顶点的三角形全等?若存在,请直接写出符合条件的
值; 若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).
(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);
(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
甲 | 乙 | 丙 | |
每辆汽车能装的数量(吨) | 4 | 2 | 3 |
每吨水果可获利润(千元) | 5 | 7 | 4 |
(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生最喜爱的一项课外活动项目,随机对全校部分学生进行了一次调査,调査结果有三种情况:A.文学艺术;B.科技制作;C.体育运动.并将调查结果绘制成如下的不完整统计图.
![]()
请根据相关信息,解答下列问题:
(1)本次活动共调查了多少名学生?
(2)将条形统计图补充完整,并求出扇形统计图中A所在扇形的圆心角的度数;
(3)若该校共有1400名学生,试估计该校学生中最喜爱文学艺术的人数是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“圆材埋壁”是我国著名的数学著作《九章算术》中的一个问题,“今有圆材,埋于壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代的数学语言表达是:“如图,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE = 1寸,AB = 1尺,求直径的长”. 依题意,CD长为( )
![]()
A.
寸 B. 13寸 C. 25寸 D. 26寸
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边
中,点
在
边上,点
在
的延长线上,
(如图1)
![]()
(1)求证:
;
(2)点
关于直线
的对称点为
,连接
,
.
①依题意将图2补全;
②证明:在点
运动的过程中,始终有
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com