精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,∠A=90°,△DCB为等腰三角形,D是AB边上一点,过BC上一点P,PE⊥AB,垂足为点E,PF⊥CD,垂足为点F,已知AD:DB=1:3,BC=6
6
,求PE+PF的长.
分析:根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.
解答:解:∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,
∴S△BCD=
1
2
BD•PE+
1
2
CD•PF=
1
2
BD•AC,
∴PE+PF=AC,
设AD=x,BD=CD=3x,AB=4x,
∵AC2=CD2-AD2=(3x)2-x2=8x2
∵AC2=BC2-AB2=(6
6
2-(4x)2
∴x=3,
∴AC=2
2
x=6
2

∴PE+PF=6
2
点评:把求两条边的长的和转变为求直角三角形的边是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案