【题目】如图,在Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,若AB=4,BC=6,则线段EF的长为_____.
![]()
【答案】![]()
【解析】
根据D为BC的中点和BC=6,可以得到BD的长,然后根据∠ABC=90°,AB=4,利用勾股定理可以得到AD的长,再根据等积法可以求得BE的长,从而可以得到AE的长,根据DG∥BF,再利用三角形相似,即可求得EF的长.
解:过点D作DG∥BF交AC于点G,如图所示,
![]()
∵D为BC边的中点,BC=6,
∴BD=3,
在Rt△ACB中,∠ABC=90°,AB=4,
∴AD=
=5,
∵BE⊥AD于点E,交AC于F,
∴BE=
,
∵AB=4,BE=
,∠AEB=90°,
∴AE=
,
设DG=x,则BF=2x,EF=2x﹣
,
∵EF∥DG,
∴△AEF∽△ADG,
∴
,即
,
解得,x=
,
∴EF=2x﹣
=2×
﹣
=
,
故答案为:
.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与X轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正确的有( )
![]()
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数
的图象过点
,对称轴为直线
,给出以下结论:①
;②
;③
:④若
为函数图象上的两点,则
.其中正确的是( )
![]()
A.①②④B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
(3)直接写出当∠A为多少度时,△DEF是等边三角形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:
频数 | 频率 | |
体育 | 40 | 0.4 |
科技 | 25 | a |
艺术 | b | 0.15 |
其它 | 20 | 0.2 |
请根据上图完成下面题目:
(1)总人数为 人,a= ,b= .
(2)请你补全条形统计图.
(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点A的坐标为(0,1),点B的坐标为(1,2),∠ABC=90°,连接AC.
![]()
(1)求直线AC的函数表达式;
(2)点P是线段OC上一动点,从点O向点C运动,过点P作PM∥y轴,分别交AB或BC,AC于点M,N,其中点P的横坐标为m,MN的长为n.
①当0<m≤1时,求n与m之间的函数关系式;
②当△AMN的面积最大时,请直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:直线
及直线
外一点P.
![]()
求作:直线
,使
.
作法:如图,
![]()
①在直线
上取一点O,以点O为圆心,
长为半径画半圆,交直线
于
两点;
②连接
,以B为圆心,
长为半径画弧,交半圆于点Q;
③作直线
.
所以直线
就是所求作的直线.
根据小明设计的尺规作图过程:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明
证明:连接
,
∵
,
∴
__________.
∴
(______________)(填推理的依据).
∴
(_____________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.
(1)求证:EG是⊙O的切线;
(2)若GF=2
,GB=4,求⊙O的半径.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com