精英家教网 > 初中数学 > 题目详情
如图,已知:△ABC中,AD、AE分别是△ABC的高和角平分线.若∠B=35°,∠C=45°,则∠DAE的度数是
分析:先根据三角形内角和得到∠CAB=180°-∠B-∠C=100°,再根据角平分线与高线的定义得到∠CAE=
1
2
∠CAB=650°,∠ADC=90°,则∠CAD=90°-∠C=45°,然后利用
∠DAE=∠CAE-∠CAD计算即可.
解答:解:∵∠B=35°,∠C=45°,
∴∠CAB=180°-∠B-∠C=100°,
∵AD是△ABC角平分线,
∴∠CAE=
1
2
∠CAB=50°,
∵AE分别是△ABC的高,
∴∠ADC=90°,
∴∠CAD=90°-∠C=45°,
∴∠DAE=∠CAE-∠CAD=50°-45°=5°.
故答案为5°.
点评:本题考查了三角形内角和定理:三角形内角和为180°.也考查了三角形外角性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始,沿AB边向点B以1cm/S的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,(其中一点到达终点,另一点也停止运动),设经过t秒.
(1)如果P、Q分别从A、B两点同时出发,那么几秒后,△PBQ的面积等于△ABC的面积的
13

(2)在(1)中,△PQB的面积能否等于10cm2?请说明理由.
(3)若P、Q分别从A、B两点出发,那么几秒后,PQ的长度等于6cm?
(4)P、Q在移动的过程中,是否存在某一时刻t,使得PQ∥AC?若存在求出t的值,若不存在请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求证:BF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE.
(1)如图①所示,当点D在线段BC上时:
①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由;
(2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由.
(3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线,则
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,D是边BC的中点,点E在边BA的延长线上,AE=AB,
BA
=
a
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步练习册答案