【题目】已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接CE、DE、AC,CE与AD交于点F.
(1)求证:四边形ACDE是平行四边形;
(2)若∠AFC=2∠B.求证:四边形ACDE是矩形.
![]()
【答案】(1)详见解析;(2)详见解析
【解析】
(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;
(2)由(1)得的结论先证得四边形ACDE是平行四边形,通过角的关系得出AF=EF,推出AD=EC,根据对角线相等的平行四边形是矩形,得证.
证明:(1)∵ABCD中,AB=CD且AB∥CD,
又∵AE=AB,
∴AE=CD,AE∥CD,
∴四边形ACDE是平行四边形;
(2)∵ABCD中,AD∥BC,
∴∠EAF=∠B,
又∵∠AFC=∠EAF+∠AEF,∠AFC=2∠B
∴∠EAF=∠AEF,
∴AF=EF,
又∵平行四边形ACDE中AD=2AF,EC=2EF
∴AD=EC,
∴平行四边形ACDE是矩形.
科目:初中数学 来源: 题型:
【题目】某中学九年级开展“社会主义核心价值观”演讲比赛活动,九(1)班、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出5名选手的复赛成绩(满分100分)如图所示.
![]()
根据图中数据解决下列问题:
(1)九(1)班复赛成绩的众数是 分,九(2)班复赛成绩的中位数是 分;
(2)请你求出九(1)班和九(2)班复赛的平均成绩和方差,并说明哪个班的成绩更稳定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).
(1)数轴上点B对应的数是 ,点B到点A的距离是 ;
(2)经过几秒,原点O是线段MN的中点?
(3)经过几秒,点M,N分别到点B的距离相等?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线
与双曲线
交于
、
两点,与
轴交于点
,与
轴交于点
,已知点
、点
.
(1)求直线
和双曲线的解析式;
(2)将
沿直线
翻折,点
落在第一象限内的点
处,直接写出点
的坐标;
(3)如图2,过点
作直线
交
轴的负半轴于点
,连接
交
轴于点
,且
的面积与
的面积相等.
①求直线
的解析式;
②在直线
上是否存在点
,使得
?若存在,请直接写出所有符合条件的点
的坐标;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量
与药物在空气中的持续时间
成正比例;燃烧后,
与
成反比例(如图所示).现测得药物
分钟燃完,此时教室内每立方米空气含药量为
.根据以上信息解答下列问题:
![]()
(1)分别求出药物燃烧时及燃烧后
关于
的函数表达式.
(2)当每立方米空气中的含药量低于
时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?
(3)当室内空气中的含药量每立方米不低于
的持续时间超过
分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数
的图象交
轴、
轴分别于
两点,交直线
于
。
(1)求点
的坐标;
(2)若
,求
的值;
(3)在(2)的条件下,
是线段
上一点,
轴于
,交
于
,若
,求
点的坐标。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,点D,E分别在AC,BC上,且CD·BC=AC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB,BC分别交于点F,G.
(1)求证:AC是⊙E的切线;
(2)若AF=4,CG=5,
①求⊙E的半径;
②若Rt△ABC的内切圆圆心为I,则IE= .
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com