精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.
(1)求证:AF﹣BF=EF;
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.
(1)证明见解析(2)3
(1)证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°。
∵DE⊥AG,∴∠AED=90°。∴∠EAD+∠ADE=90°。∴∠ADE=∠BAF。
又∵BF∥DE,∴∠AEB=∠AED=90°。
在△AED和△BFA中,∵∠AEB=∠AED,∠ADE=∠BAF,AD = AB。
∴△AED≌△BDA(AAS)。∴BF=AE。
∵AF﹣AE=EF,∴AF﹣BF=EF。
(2)解:如图,
根据题意知:∠FAF′=90°,DE=AF′=AF,
∴∠F′AE=∠AED=90°,即∠F′AE+∠AED=180°。
∴AF′∥ED。∴四边形AEDF′为平行四边形。
又∵∠AED=90°,∴四边形AEDF′是矩形。
∴EF′=AD=3。
∴点F′与旋转前的图中点E之间的距离为3。
(1)由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出三角形ABF与三角形ADE全等,利用全等三角的对应边相等可得出BF=AE,由AF﹣AE=EF,等量代换可得证。
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,连接EF′,如图所示,由旋转的性质可得出∠FAF′为直角,AF=AF′,由(1)的全等可得出AF=DE,等量代换可得出DE=AF′=AF,再利用同旁内角互补两直线平行得到AF′与DE平行,根据一组对边平行且相等的四边形为平行四边形可得出AEDF′为平行四边形,再由一个角为直角的平行四边形为矩形可得出AEDF′为矩形,根据矩形的对角线相等可得出EF′=AD,由AD的长即可求出EF′的长。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列图案中是中心对称图形的是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面图形中是轴对称不是中心对称图形的是 (  )
A.正方形B.正六边形C.圆D.正五边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在RtABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将RtABC绕A点顺时针旋转120°后得到RtADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的RtADE,求出RtADE 的直角边DE被⊙M截得的弦PQ的长度;
(2)判断RtADE的斜边AD所在的直线与⊙M的位置关系(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到, 每一次旋转_______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图, 在平面直角坐标系中, 若△ABC与△A1B1C1关于E点成中心对称, 则对称中心E点的坐标是(   ).
A.(0,0)B.(1,-1)C.(2,-1)D.(3,-1)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列交通标识中,是轴对称图形的是

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图案中,是中心对称图形的是(     ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,关于直线对称,且 ,则的度数为(   )    
A.48°B.34°C.74°D.98°

查看答案和解析>>

同步练习册答案