精英家教网 > 初中数学 > 题目详情
23、如图,在△ABC中,点D、E分别在AB、AC上,连接BE、CD相交于点O.
(1)如果AB=AC,AD=AE,求证:OB=OC;
(2)在①OB=OC,②BD=CE,③∠ABE=∠ACD,④∠BDC=∠CEB四个条件中选取两个个作为条件,就能得到结论“△ABC是等腰三角形”,那么这两个条件可以是:
①③或①④或②③或②④
(只要填写一种情况).
分析:(1)已知AB=AC,可得∠ABC=∠ACB,欲求OB=OC,需先求出∠OBC=∠OCB,就必须得到∠ABE=∠ACD,因此结合已知条件证△ABE≌△ACD即可.
(2)结合图形,若△ABC是等腰三角形,则必有AB=AC,即∠ABC=∠ACB,因此所选的条件能够判定∠ABC=∠ACB成立即可.
解答:(1)证明:∵AB=AC,AD=AE,∠A=∠A,
∴△ABE≌△ACD,
∴∠ABE=∠ACD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC;

(2)解:①③或①④或②③或②④.
以选①③为例:
证明:∵OB=OC,∠ABE=∠ACD,
∴△OBD≌△COE,
∴∠OBD=∠OCE,
又由OB=OC,
得∠OBC=∠OCB,
∴∠ABC=∠ACB,即AB=AC,
故△ABC是等腰三角形.(其他选项证法同上)
故填①③或①④或②③或②④.
点评:此题主要考查的是全等三角形的判定和性质以及等腰三角形的判定证得三角形全等是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案