精英家教网 > 初中数学 > 题目详情
如图,在菱形ABCD中,AB=4,∠AND=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为
2
2
时,四边形AMDN是矩形;         
②当AM的值为
4
4
时,四边形AMDN是菱形.
分析:(1)利用菱形的性质和已知条件可证得△NDE≌△MAE,即可利用四边形AMDN的对角线互相平分证得四边形AMDN是平行四边形;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=
1
2
AD=2时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
解答:(1)证明:∵四边新ABCD是菱形,
∴AB∥CD,
∴∠DNE=∠AME,
∵点E是AD边的中点,
∴AE=DE,
在△NDE和△MAE中,
∠DNE=∠AME
∠DEN=∠AEM
DE=AE

∴△NDE≌△MAE(AAS),
∴NE=ME,
∴四边形AMDN是平行四边形;

(2)解:①当AM的值为2时,四边形AMDN是矩形.
理由如下:
∵AM=2=
1
2
AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;

②当AM的值为4时,四边形AMDN是菱形.
理由如下:
∵AM=4,
∴AM=AD=4,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形.
故答案为;(1)2,(2)4.
点评:本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案