精英家教网 > 初中数学 > 题目详情

如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.

证明:∵∠1+∠4=180°(邻补角定义)
∠1+∠2=180°(已知)
∴∠2=∠4(同角的补角相等)
∴EF∥AB(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠B=∠3(已知),
∴∠ADE=∠B(等量代换),
∴DE∥BC(同位角相等,两直线平行)
∴∠AED=∠C(两直线平行,同位角相等).
分析:由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.
点评:本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

52、如图所示,已知AB=AC,EB=EC,AE的延长线交BC于D,那么图中的全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,已知⊙O中,弦AB,CD相交于点P,AP=6,BP=2,CP=4,则PD的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知等边△ABC的两个顶点的坐标为A(-4,0),B(2,0).
试求:
(1)C点的坐标;
(2)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图所示,已知EA⊥AB于点A,CD⊥DF于点D,AB∥CD,请判断EA与DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知等边△ABC的边长为a,P是△ABC内一点,PD∥AB,PE∥BC,PF∥AC,点D、E、F分别在BC、AC、AB上,猜想:PD+PE+PF=
a
a
,并证明你的猜想.

查看答案和解析>>

同步练习册答案