精英家教网 > 初中数学 > 题目详情
已知:如图,直线y=kx+b与x轴、y轴分别交于点A、B两点,OA=OB=1,动点P在线段AB上移动,以P为顶点作∠OPQ=45°,射线PQ交x轴于点Q.
(1)求直线AB的解析式.
(2)△OPQ能否是等腰三角形?如果能,请求出点P的坐标;若不能,请说明理由.
(3)无论m为何值,(2)中求出的P点是否始终在直线y=mx+
1-m2
(m≠0)上?请说明理由.
分析:(1)求出A、B点的坐标,利用待定系数法解方程组,求出函数的解析式;
(2)假设存在等腰三角形,分三种情况讨论:(ⅰ)QP=QO;(ⅱ)QP=QO;(ⅲ) 若PO=PQ.能求出P点坐标,则存在点P,否则,不存在.
(3)将(2)中的点代入y=mx+
1-m
2
(m≠0),等式成立的点即在直线上.
解答:解:(1)由OA=OB=1可知点A、B的坐标是A(0,1),B(1,0),
把A(0,1),B(1,0)代入y=kx+b得:
b=1
k+b=0

解得:k=-1,b=1,
则y=-x+1;

(2)△OPQ可以是等腰三角形.
过P点PE⊥OA交OA于点E,
(ⅰ)若OP=OQ,
则∠OPQ=∠OQP=∠OPQ,
∴∠POQ=90°,
∴点P与点A重合,
∴点P坐标为(0,1),
(ⅱ)若QP=QO,
则∠OPQ=∠QOP=45°,
所以PQ⊥QO,
可设P(x,x)代入y=-x+1得x=
1
2

∴点P坐标为(
1
2
1
2
),
(ⅲ) 若PO=PQ,
∵∠OPQ+∠1=∠2+∠3,
而∠OPQ=∠3=45°,
∴∠1=∠2,
又∵∠3=∠4=45°,
∴△AOP≌△BPQ(AAS),
PB=OA=1,
∴AP=
2
-1
由勾股定理求得PE=AE=1-
2
2

∴EO=
2
2

∴点P坐标为(1-
2
2
2
2
),
∴点P坐标为(0,1)或(
1
2
1
2
)或(1-
2
2
2
2
)时,△OPQ是等腰三角形.

(3)把x=0代入y=mx+
1-m
2
≠1;
把x=
1
2
代入y=mx+
1-m
2
=
1
2

把x=1-
2
2
代入y=mx+
1-m
2
2
2

所以,(2)中求得的点P,只有当点P坐标为(
1
2
1
2
)时,P点始终在直线y=mx+
1-m
2
(m≠0)上.
点评:本题考查了一次函数综合题,属于存在性问题,要分类讨论,同时假设存在,能求出点的坐标,则存在,否则,不存在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,直线y=
3
3
x+
3
与x轴、y轴分别交于A、B两点,⊙M经过精英家教网原点O及A、B两点.
(1)求以OA、OB两线段长为根的一元二方程;
(2)C是⊙M上一点,连接BC交OA于点D,若∠COD=∠CBO,写出经过O、C、A三点的二次函数的解析式;
(3)若延长BC到E,使DE=2,连接EA,试判断直线EA与⊙M的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•岳阳)已知:如图,直线MN和⊙O切于点C,AB是⊙O的直径,AE⊥MN,BF⊥MN且与⊙O交于点G,垂足分别是E、F,AC是⊙O的弦,
(1)求证:AB=AE+BF;
(2)令AE=m,EF=n,BF=p,证明:n2=4mp;
(3)设⊙O的半径为5,AC=6,求以AE、BF的长为根的一元二次方程;
(4)将直线MN向上平行移动至与⊙O相交时,m、n、p之间有什么关系?向下平行移动至与⊙O相离时,m、n、p之间又有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b经过点A、B.
求:(1)这个函数的解析式;
(2)当x=4时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线y=kx+b与x轴交于点A,且与双曲线y=
m
x
交于点B(4,2)和点C(n,-4). 
(1)求直线y=kx+b和双曲线y=
m
x
的解析式;
(2)根据图象写出关于x的不等式kx+b<
m
x
的解集;
(3)点D在直线y=kx+b上,设点D的纵坐标为t(t>0).过点D作平行于x轴的直线交双曲线y=
m
x
于点E.若△ADE的面积为
7
2
,请直接写出所有满足条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直线a∥b,∠1=(2x+10)°,∠2=(3x-5)°,那么∠1=
80
80
°.

查看答案和解析>>

同步练习册答案