精英家教网 > 初中数学 > 题目详情
已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0有两个实数根,第三边BC的长为5.
(1)求证:无论k为何值,关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0都有两个不相等的实数根;
(2)当k为何值时,△ABC是直角三角形;
(3)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.
分析:(1)若要证明方程总有两个不相等的实数根,只需证明△>0.
(2)利用求根公式得到x1=k+2,x2=k+1,设AB=k+2,AC=k+1,再利用勾股定理的逆定理分类讨论:AB2+AC2=BC2或AB2+BC2=AC2或AC2+BC2=AB2,分别建立关于k的方程,解出k的值,然后满足两根为正根的k的值为所求..
(3)此题要分两种情况进行讨论,若AB=BC=5时,把5代入方程即可求出k的值,若AB=AC时,则△=0,列出关于k的方程,解出k的值即可.
解答:解:(1)因为△=b2-4ac=[-(2k+3)]2-4×1×(k2+3k+2)=1>0,
所以方程总有两个不相等的实数根.

(2)解:x2-(2k+3)x+k2+3k+2=0的解为x=
2k+3±1
2

∴x1=k+2,x2=k+1,
设AB=k+2,AC=k+1,
当AB2+AC2=BC2,即(k+2)2+(k+1)2=52
解得:k1=-5,k2=2,
由于AB=k+2>0,AC=k+1>0,所以k=2;
当AB2+BC2=AC2,即(k+2)2+52=(k+1)2
解得:k=-14,
由于AB=k+2>0,AC=k+1>0,所以k=-14舍去;
当AC2+BC2=AB2,即(k+1)2+52=(k+2)2
解得:k=11,
由于AB=k+2=13,AC=12,所以k=11,
∴k为2或11时,△ABC是直角三角形.

(3)若AB=BC=5时,5是方程x2-(2k+3)x+k2+3k+2=0的实数根,把x=5代入原方程,得k=3或k=4.
由(1)知,无论k取何值,△>0,所以AB≠AC,故k只能取3或4.
根据一元二次方程根与系数的关系可得:AB+AC=2k+3,当k=3时,AB+AC=9,则周长是9+5=14;
当k=4时,AB+AC=8+3=11.则周长是11+5=16.
点评:本题主要考查了一元二次方程根与系数的关系和根的判别式,一元二次方程根的情况与判别式△的关系是:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.在解题的过程中注意不要忽视三角形的边长是正数这一条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC的两边长a=3,c=5,且第三边长b为关于x的一元二次方程x2-4x+m=0的两个正整数根之一,求sinA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC的两边长为m、n,夹角为α,求作△EFG,使得∠E=∠α;有两条边长分别为m、n,且与△ABC不全等.(要求:作出所有满足条件的△EFG,尺规作图,不写画法,保留作图痕迹.在图中标注m、n、α、E、F、G)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的两边长分别为2和3,则第三边x的取值范围是
1<x<5
1<x<5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的两边长为10cm和12cm,BC边上的高为8cm,求第三边长.

查看答案和解析>>

同步练习册答案