【题目】如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,则∠ACE=_____°;若AB=1,则OE的最小值=_____.
![]()
【答案】30
【解析】
根据等边三角形的性质可得OC=
AC,∠ABD=30°,根据"SAS"可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.
解:∵△ABC的等边三角形,点O是AC的中点,
∴OC=
AC,∠ABD=30°
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△ABD≌△ACE(SAS)
∴∠ACE=30°=∠ABD
当OE⊥EC时,OE的长度最小,
∵∠OEC=90°,∠ACE=30°
∴OE最小值=
OC=
AB=![]()
故答案为:30,![]()
科目:初中数学 来源: 题型:
【题目】如图,将边长为
的正方形
的一边
与直角边分别是
和
的
的一边
重合.正方形
以每秒
个单位长度的速度沿
向右匀速运动,当点
和点
重合时正方形停止运动.设正方形的运动时间为
秒,正方形
与
重叠部分面积为S,则S关于
的函数图象为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与
轴相交于A、B两点,与
轴相交于点C,OA=1,OC=3,连接BC.
(1)求b的值;
(2)点D是直线BC上方抛物线一动点(点B、C除外),当△BCD的面积取得最大值时,在
轴上是否存在一点P,使得|PB﹣PD|最大,若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(2)的条件下,若在平面上存在点Q,使得以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AM⊥AN,AB平分∠MAN,过点B作BC⊥BA交AN于点C;动点E、D同时从A点出发,其中动点E以2cm/s的速度沿射线AN方向运动,动点D以1cm/s的速度运动;已知AC=6cm,设动点D,E的运动时间为t.
![]()
(1)当点D在射线AM上运动时满足S△ADB:S△BEC=2:1,试求点D,E的运动时间t的值;
(2)当动点D在直线AM上运动,E在射线AN运动过程中,是否存在某个时间t,使得△ADB与△BEC全等?若存在,请求出时间t的值;若不存在,请说出理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知
,点
为平面内一点,
于
.
(1)如图1,直接写出
和
之间的数量关系 ;
(2)如图2,过点
作
于点
,求证:
;
(3)如图3,在(2)问的条件下,点
、
在
上,连接
、
、
,
平分
,
平分
,若
,
,求
的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.
![]()
(1)求绿化的面积.(用含a、b的代数式表示)
(2)当a=2,b=4时,求绿化的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是________.(仅添加一对相等的线段或一对相等的角)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;
②当AE= cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com