【答案】
分析:(1)AD=

BD,理由为:如图1所示,由AB=AC及∠BAC=90°,得到三角形ABC为等腰直角三角形,可得出两个锐角为45°,再由∠APD=∠B,利用外角性质及角的加减,利用等量代换的思想得到∠BDP=∠APC,得出三角形PBD与三角形ACP相似,由相似得比例,设直角边AB=AC=3b,利用勾股定理表示出BC,再由PC=2PB,表示出BP和PC,再将表示的AC代入比例式,表示出BD,由AB-BD表示出AD,即可得出AD与BD的关系;
(2)如图2所示,由AB=AC及∠BAC=60°,得到三角形ABC为等边三角形,可得出∠B=∠BAC=∠ACB,且AB=AC=BC,由∠APD=∠B,利用外角性质及角的加减,利用等量代换的思想得到∠BDP=∠APC,得出三角形PBD与三角形ACP相似,由相似得比例,设三边上为3a,根据PC=2PB,表示出PC与BP,代入比例式中表示出BD,由AB-BD表示出AD,即可得出AD与BD的关系;
(3)过点D作DF⊥BC于F点,过D作DM⊥AC于M点,过Q作QN⊥CA交CA延长线于N点,如图3所示,由(2)表示出的AC,PB,PC,BD,AD,在直角三角形BFD中,由∠B=60°,得出∠BDF=30°,利用30°所对的直角边等于斜边的一半表示出BF,进而表示出DF,由BP-BF表示出PF,再由FP+PC表示出CF,在直角三角形CFD中,利用勾股定理表示出CD,由∠APD=∠B=60°,及∠DCQ=60°,得到∠APD=∠DCQ,再由一对对顶角相等,利用内角和定理推出∠PDE=∠CQE,由∠ACB=∠DCQ等号两边都减去∠ACD,得到∠PCD=∠ACQ,可得出三角形PCD与三角形ACQ相似,由相似得比例,根据CQ的长得出CD的长,确定出a的值,进而得出BD,AD,CF,DF的长,再由三角形FCD与三角形NCQ相似,由相似得比例,将已知的边代入求出CN与NQ的长,在直角三角形AMD中,由∠BAD=60°,得出∠ADM=30°,利用30°所对的直角边等于斜边的一半求出AM的长,进而得到DM的长,由AC-AM求出CM的长,再由CN-CM求出MN的长,由三角形DMK与三角形QNK相似,由相似得比例,得出KM与KN的比值,可得到KM与MN的比值,将MN的长代入求出KM的长,由KM-AM即可求出AK的长.
解答:(1)AD=

BD,理由为:
证明:∵AB=AC,∠BAC=90°,
∴△ABC为等腰直角三角形,
∴∠B=∠ACB=45°,
又∠CPD=∠B+∠BDP=∠APD+∠APC,且∠APD=∠B,
∴∠BDP=∠APC,
∴△PBD∽△ACP,
设AB=AC=3b,则有BC=3

b,
由PC=2PB,得到PB=

b,PC=2

b,
∴

=

,即

=

,
解得:BD=

b,
∴AD=AB-BD=3b-

b=

b,
则AD=

BD;
故答案为:AD=

BD.
(2)证明:∵AB=AC,∠BAC=60°,
∴△ABC为等边三角形,
∴∠BAC=∠ACB=∠B=60°,AB=AC=BC,
设AB=AC=BC=3a,由PC=2PB,得到PB=a,PC=2a,
∵∠CPD=∠B+∠BDP=∠APD+∠APC,且∠APD=∠B,
∴∠BDP=∠APC,
∴△PBD∽△ACP,
∴

=

,即

=

,
∴BD=

a,
∴AD=AB-BD=3a-

a=

a,
∴AD=

BD;
(3)解:过点D作DF⊥BC于F点,过D作DM⊥AC于M点,过Q作QN⊥CA交CA延长线于N点,

由(2)知:AC=3a,PB=a,PC=2a,BD=

a,AD=

a,
在Rt△DFB中,∠B=60°,可得出∠BDF=30°,
∴BF=

BD=

a,DF=

a,
∴PF=PB-BF=

a,
∴CF=PF+PC=

a,
在Rt△CFD中,根据勾股定理得:CD
2=CF
2+DF
2,
解得:CD=

a,
∵∠APD=∠B=60°,又∠DCQ=60°,
∴∠APD=∠DCQ,
∵∠PED=∠CEQ,
∴∠PDE=∠CQE,又∠ACB=60°,
∴∠ACB-∠ACD=∠DCQ-∠ACD,即∠PCD=∠ACQ,
∴△PCD∽△ACQ,
∴

=

=

=

,又CQ=

,
∴CD=

,即

a=

,
解得:a=1,
∴BD=

,AD=

,CF=

,DF=

,
∵∠CFD=∠CNQ=90°,∠FCD=∠NCQ,
∴△FCD∽△NCQ,
∴

=

=

,
∴CN=4,NQ=

,
∵在Rt△AMD中,∠DAM=60°,
∴∠BDF=30°,
∴AM=

,DM=

,
∴CM=AC-AM=

,
∴MN=CN-CM=

,
∵∠DMK=∠QNK=90°,∠DKM=∠QKN,
∴△DMK∽△QNK,
∴

=

=

,即KM=

KN,
∴KM=

MN=

×

=

,
则AK=KM-AM=

-

=

.
点评:此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,等腰直角三角形的判定与性质,等边三角形的判定与性质,含30°直角三角形的性质,利用了转化及等量代换的数学思想,是一道难道较强的压轴题.