精英家教网 > 初中数学 > 题目详情
精英家教网如图,D是等边△ABC内一点,AD=BD,∠DBP=∠DBC,且BP=BA,求∠P的度数.
分析:如图,连接CD,已知△ABC是等边三角形,则AB=AC=BC,又AD=BD,易证△BDC≌△ADC,可得∠DCB=∠DCA=30°,∠DBC=∠DAC,已知∠DBP=∠DBC,所以∠DAC=∠DBP,又已知BP=BA,可得BP=AC,所以△DBP≌△DAC,所以∠P=∠ACD=30°;
解答:精英家教网解:如图,连接CD,
∵△ABC是等边三角形,
∴AB=AC=BC,又AD=BD,DC是公共边,
∴△BDC≌△ADC(SSS),
∴∠DCB=∠DCA=
1
2
×60°=30°,∠DBC=∠DAC,
∵∠DBP=∠DBC,
∴∠DAC=∠DBP,
又已知BP=BA,
∴BP=AC,
∴△DBP≌△DAC(SAS),
∴∠P=∠ACD=30°.
点评:本题主要考查了等边三角形的性质和全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具;在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,点D是线段BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交AB、AC于点F、G,连接BE.
(1)若△ABC的面积是1,则△ADE的最小面积为
3
4
3
4

(2)求证:△AEB≌ADC;
(3)探究四边形BCGE是怎样特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,P为△ABC内任意一点,PE∥AB,PF∥AC.那么,△PEF是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D是AC的中点,F为边AB上一动点,AF=nBF,E为直线BC上一点,且∠EDF=120°.
 
(1)如图1,当n=2时,求
CE
CD
=
1
3
1
3

(2)如图2,当n=
1
3
时,求证:CD=2CE;
(3)如图3,过点D作DM⊥BC于M,当
n=3
n=3
时,C点为线段EM的中点.

查看答案和解析>>

同步练习册答案