精英家教网 > 初中数学 > 题目详情
如图,⊙O与矩形ABCD的边BC相切于点F,与边AB的延长线相切于点E,且顶点D刚好在直线EF上.
(1)图中共有哪些个角等于45°?不添加任何辅助线,直接写出角的名称即可;
(2)若AB=2,AD=3,求⊙O的半径及图中阴影部分面积;
(3)点P在矩形ABCD的边AD上移动,连接PF并延长交⊙O于点Q,那么当点P移动时,请你探究∠DPF与∠FEQ的大小关系,并说明理由.

【答案】分析:(1)根据切线长定理发现等腰直角三角形,再进一步结合对顶角相等和平行线的性质写出所有等于45°的角;
(2)连接OF、OE.发现正方形OFBE,要求圆的半径,即求BF的长,根据平行线分线段成比例定理均可求解,阴影部分的面积即为扇形OFE的面积减去三角形OEF的面积;
(3)根据圆周角定理求得∠Q=45°,根据三角形的内角和定理即可证明两角相等.
解答:解:(1)∠BEF、∠BFE、∠CDF、∠CFD、∠ADF.

(2)连接OF、OE,则四边形OEBF是正方形.
设圆的半径是r.
∵AD∥BC,


r=1或r=0(不合题意,应舍去).
即圆的半径是1.
阴影部分的面积=π-
解:∠DPF=∠FEQ.理由如下:
∵BE、BF是圆的切线,
∴BE=BF.
∴∠BFE=∠BEF=45°.
∵AD∥BC,
∴∠ADF=45°.
∵四边形OEBF是正方形,
∴∠EOF=90°.
∴∠Q=45°=∠ADF.
又∠PFD=∠QFE,
∴∠DPF=∠FEQ.
点评:此题综合运用了切线长定理、正方形的判定和性质、圆周角定理以及扇形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,⊙O与矩形ABCD的边BC相切于点F,与边AB的延长线相切于点E,且顶点D刚好在直精英家教网线EF上.
(1)图中共有哪些个角等于45°?不添加任何辅助线,直接写出角的名称即可;
(2)若AB=2,AD=3,求⊙O的半径及图中阴影部分面积;
(3)点P在矩形ABCD的边AD上移动,连接PF并延长交⊙O于点Q,那么当点P移动时,请你探究∠DPF与∠FEQ的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,⊙O与矩形ABCD的AD、AB、CD的三边分别相切于E、F、G三点,边BC与⊙O交于P、Q两点,若AD=4,AB=3,则sin∠PEQ的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,⊙O与矩形ABCD的边BC相切于点F,与边AB的延长线相切于点E,且顶点D刚好在直线EF上.
(1)图中共有哪些个角等于45°?不添加任何辅助线,直接写出角的名称即可;
(2)若AB=2,AD=3,求⊙O的半径及图中阴影部分面积;
(3)点P在矩形ABCD的边AD上移动,连接PF并延长交⊙O于点Q,那么当点P移动时,请你探究∠DPF与∠FEQ的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省福州市连江县东岱中学九年级(上)期中数学试卷(解析版) 题型:解答题

如图,⊙O与矩形ABCD的边BC相切于点F,与边AB的延长线相切于点E,且顶点D刚好在直线EF上.
(1)图中共有哪些个角等于45°?不添加任何辅助线,直接写出角的名称即可;
(2)若AB=2,AD=3,求⊙O的半径及图中阴影部分面积;
(3)点P在矩形ABCD的边AD上移动,连接PF并延长交⊙O于点Q,那么当点P移动时,请你探究∠DPF与∠FEQ的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案