精英家教网 > 初中数学 > 题目详情
已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,△BCD为等边三角形,且AD=
2
,求梯形ABCD的周长.
分析:先根据△BCD是等边三角形,可得∠2=60°,BC=CD=BD,而AD∥BC,∠A=90°,根据平行线的性质可求∠ABC=90°,进而可求∠1=30°,利用直角三角形中30°的角所对的直角边等于斜边的一半,易求BD,再根据特殊三角函数值可求AB,从而可求梯形的周长.
解答:解:如右图,
∵△BCD是等边三角形,
∴∠2=60°,BC=CD=BD,
∵AD∥BC,∠A=90°,
∴∠ABC+∠A=180°,
∴∠ABC=90°,
∴∠1=90°-60°=30°,
在Rt△ABD中,∵∠1=30°,AD=
2

∴BD=2AD=2
2
,AB=tan30°•AD=
6

∴梯形ABCD的周长=AD+AB+BC+CD=
2
+
6
+2
2
+2
2
=
6
+5
2
点评:本题考查了二次根式的应用,解题的关键是注意含有30°角的直角三角形的性质使用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,直角梯形ABCD中,∠BCD=90°,∠CDA=60°,AB=AD,AB=4,DF=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=8,AD=12,tanC=
43
,AM∥DC,E精英家教网、F分别是线段AD、AM上的动点(点E与A、D不重合)且∠FEM=∠AMB,设DE=x,MF=y.
(1)求证:AM=DM;
(2)求y与x的函数关系式并写出定义域;
(3)若点E在边AD上移动时,△EFM为等腰三角形,求x的值;
(4)若以BM为半径的⊙M和以ED为半径的⊙E相切,求△EMD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC,连AG.精英家教网
(1)求证:FC=BE;
(2)若AD=DC=2,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC中点,已知D点的横坐标为4,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,至点D停止,设移动的时间为t秒

(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的
14

(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

同步练习册答案