精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知Rt△AOB的顶点A是一次函数y=-x+m+3的图象与反比例函数y=
mx
的图象在第二象限的交点,且S△AOB=1,则点A的坐标为
 
分析:设出点A的坐标,利用所给的面积求得反比例函数解析式,进而求得一次函数解析式,让两个函数解析式组成方程组求解即可.
解答:精英家教网解:设A(x,y),
∵S△AOB=1,
1
2
×(-x)y=1,xy=-2,
∵A在反比例函数解析式上,
∴m=xy=-2,
由题意得
y=-x+1
y=-
2
x

解得:x=2,y=-1,或x=-1,y=2,
∵图象在第二象限,
∴A(-1,2).
故答案为:(-1,2).
点评:本题考查了反比例函数与一次函数的交点,难度不大,掌握利用所给的三角形的面积先算出反比例函数的关系式,过某个点,这个点的坐标应适合这个函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC外切于⊙O,E、F、H为切点,∠ABC=90°,直线FE、CB相交于D点,连接AO、HE、HF,则下列结论:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正确结论的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-数学公式数学公式).

查看答案和解析>>

科目:初中数学 来源:2011年辽宁省辽阳市中考数学试卷(解析版) 题型:解答题

如图,已知Rt△ABO,∠BAO=90°,以点O为坐标原点,OA所在直线为y轴,建立平面直角坐标系,AO=3,∠AOB=30°,将Rt△ABO沿OB翻折后,点A落在第一象限内的点D处.
(1)求D点坐标;
(2)若抛物线y=ax2+bx+3(a≠0)经过B、D两点,求此抛物线的表达式;
(3)若抛物线的顶点为E,它的对称轴与OB交于点F,点P为射线OB上一动点,过点P作y轴的平行线,交抛物线于点M.是否存在点P,使得以E、F、M、P为顶点的四边形为等腰梯形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-).

查看答案和解析>>

科目:初中数学 来源:2009年湖北省武汉市新洲区初中毕业年级数学试卷(解析版) 题型:选择题

(2009•新洲区模拟)如图,已知Rt△ABC外切于⊙O,E、F、H为切点,∠ABC=90°,直线FE、CB相交于D点,连接AO、HE、HF,则下列结论:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正确结论的个数为( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案