精英家教网 > 初中数学 > 题目详情
如图,线段AB经过圆心O,交⊙O于点A、C,点D在⊙O上,连接AD、BD,∠B=30°,
(1)BD是⊙O的切线吗?请说明理由.
(2)连接CD,已知CD=6,求AB的长.
分析:(1)连接OD,通过计算得到∠ODB=90°,证明BD与⊙O相切.
(2)△OCD是边长为6的等边三角形,得到圆的半径的长,然后求出AB的长.
解答:解:(1)直线BD与⊙O相切.理由如下:
如图,连接OD,
∵∠DAB=∠B=30°,∴∠ADB=120°,
∵OA=OD,∴∠ODA=∠OAD=30°,
∴∠ODB=∠ADB-∠ODA=120°-30°=90°.
所以直线BD与⊙O相切.

(2)连接CD,
∠COD=∠OAD+∠ODA=30°+30°=60°,
又OC=OD
∴△OCD是等边三角形,
即:OC=OD=CD=6=OA,
∵∠ODB=90°,∠B=30°,
∴OB=12,
∴AB=AO+OB=6+12=18.
点评:本题考查的是切线的判断,(1)根据切线的判断定理判断BD与圆相切.(2)利用三角形的边角关系求出线段AB的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D,求证BD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB经过圆心O,交⊙O于点A、C,BD是⊙O的切线.∠BAD=30°,边BD交圆于点D,求∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,连接AD,BD,∠A=∠B=30°,圆的半径R.
(1)求证:BD是⊙O的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D.
(1)求证:BD是⊙O的切线.
(2)若⊙O的半径为2,求弦AD的长.

查看答案和解析>>

科目:初中数学 来源:2012届浙江省温岭市四校联考九年级上学期期中考试数学试卷(带解析) 题型:解答题

如图,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D。

(1)求证BD是⊙O的切线。
(2)若⊙O的半径为2,求弦AD的长。

查看答案和解析>>

同步练习册答案