精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12(2) 反比例函数的解析式为y=一次函数的解析式为y=-x+1.

【解析】试题分析: 1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周长=AO+AH+OH=3+4+5=12

2)将A点坐标代入y=k≠0),得

k=-4×3=-12

反比例函数的解析式为y=

y=-2时,-2=,解得x=6,即B6-2).

AB点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1

考点:反比例函数与一次函数的交点问题.

型】解答
束】
21

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

【答案】30°

【解析】(1)连结OC,如图,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.

答:

(1)证明:连结OC,如图,

OA=OC

∴∠A=OCA

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC

∴∠ABD=BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F

AC=CF

连接AD

AB是⊙O的直径,

ADBD

ADCF

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB

AD=AC

AD=CF

ADCF

∴四边形ACFD是菱形。

故答案为:30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B2cm/s的速度移动,点Q沿DA边从点D开始向点A1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:

(1)当t为何值时,△QAP是等腰直角三角形?

(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OAOB相交于MN两点,则以下结论:(1PM=PN恒成立;(2OM+ON的值不变;(3)四边形PMON的面积不变;(4MN的长不变,其中正确的个数为(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC三个顶点分别是A20)、B04)、C-30),把△ABC沿x轴向右平移4个单位,得到△A1B1C1

1)在图中以黑点为原点建立平面直角坐标系,画出△ABC△A1B1C1

2)写出A1B1C1各点的坐标;

3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知M是△ABC的边AB的中点,DMC的延长线上一点,满足∠ACM=BDM

(1)求证:AC=BD

(2)若∠BMC=60°,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)

(参考数据:sin37°0.60,cos37°0.80,tan37°0.75,1.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,将ABD沿AD折叠得到AED,点E落在CD上,∠B=50°,∠C=30°

1)填空:∠BAD= 度;

2)求∠CAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在中,,将如图摆放,使得的两条边分别经过点和点

1)当将如图1摆放时,则_________度.

2)当将如图2摆放时,请求出的度数,并说明理由.

3)能否将摆放到某个位置时,使得同时平分?直接写出结论_______(填不能

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形。例如:某三角形三边长分别是568,因为,所以这个三角形是常态三角形。

1)若△ABC三边长分别是24,则此三角形_________常态三角形(填不是);

2)若RtABC是常态三角形,则此三角形的三边长之比为__________________(请按从小到大排列);

3)如图,RtABC中,∠ACB=90°,BC=6,点DAB的中点,连接CD,若△BCD是常态三角形,求△ABC的面积。

查看答案和解析>>

同步练习册答案