精英家教网 > 初中数学 > 题目详情
(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.
(1)证明△AMF是等腰三角形;
(2)当EG过点D时(如图(3)),求x的值;
(3)将y表示成x的函数,并求y的最大值.
分析:(1)由条件EF∥AD就可以得出∠A=∠EFB,∠GFE=∠AMF,由△GFE与△BFE关于EF对称可以得出∠GFE=∠BFE,就可以得出∠A=∠AMF,从而得出结论;
(2)当EG过点D时在Rt△EDC中由勾股定理建立方程求出其解即可;
(3)分情况讨论当点G不在梯形外时和点G在梯形之外两种情况求出x的值就可以求出y与x之间的函数关系式,在自变量的取值范围内就可以求出相应的最大值,从而求出结论;
解答:(1)证明:如图1,∵EF∥AD,
∴∠A=∠EFB,∠GFE=∠AMF.
∵△GFE与△BFE关于EF对称,
∴△GFE≌△BFE,
∴∠GFE=∠BFE,
∴∠A=∠AMF,
∴△AMF是等腰三角形;

(2)解:如图1,作DQ⊥AB于点Q,
∴∠AQD=∠DQB=90°.
∵AB∥DC,
∴∠CDQ=90°.
∵∠B=90°,
∴四边形CDQB是矩形,
∴CD=QB=2,QD=CB=6,
∴AQ=10-2=8.
在Rt△ADQ中,由勾股定理得
AD=
64+36
=10,
∴tan∠A=
3
4

∴tan∠EFB=
EB
FB
=
3
4

如图3,∵EB=x,
∴FB=
4
3
x,CE=6-x,
∴AF=MF=10-
4
3
x,
∴GM=
8
3
x-10

∴GD=2x-
15
2

∴DE=
15
2
-x,
在Rt△CED中,由勾股定理得
15
2
-x)2-(6-x)2=4,
解得:x=
65
12

∴当EG过点D时x=
65
12



(3)解:当点G在梯形ABCD内部或边AD上时,
y=
1
2
x•
4
3
x=
2
3
x2
当点G在边AD上时,易求得x=
15
4

此时0<x≤
15
4

则当x=
15
4
时,y最大值为
75
8

当点G在梯形ABCD外时,
∵△GMN∽△GFE,
S△GMN
S△GFE
=(
GM
GF
)2

2
3
x2-y
2
3
x2
=(
8
3
x-10
4
3
x
)2
,由(2)知,x≤
65
12

y=-2x2+20x-
75
2
=-2(x-5)2+
25
2
15
4
<x≤
65
12
),
当x=5时,y最大值为
25
2

由于
25
2
75
8
,故当x=5时,y最大值为
25
2
点评:本题考查了等腰三角形的判定及性质的运用,矩形的性质的运用,勾股定理的性质的运用,轴对称的性质的运用,函数的解析式的性质的运用,分段函数的运用,三角函数值的运用,解答时求分段函数的解析式是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是
3
3
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宿迁)如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=
3
,BD=1,求△DEC外接圆的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宿迁)如图,数轴所表示的不等式的解集是
x≤3
x≤3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宿迁)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是
40
40
m.

查看答案和解析>>

同步练习册答案