精英家教网 > 初中数学 > 题目详情
精英家教网如图,一次函数y=ax+b的图象与反比例函数y=
kx
的图象交于M、N两点.
求:(1)反比例函数与一次函数的解析式;
(2)根据图象写出反比例函数的值>一次函数的值的x的取值范围.
分析:(1)由图象可知M(2,m),N(-1,-4).首先把N点坐标代入反比例函数解析式就可求出k的值,确定该函数解析式.在此基础上再求出M点的坐标,然后再把点M、N的坐标代入一次函数的解析式,利用方程组,求出a、b的值,从而求出一次函数的解析式;
(2)利用图象,分别在第一、三象限求出反比例函数的值>一次函数的值的x的取值范围.
解答:解:(1)∵y=
k
x
的图象经过N(-1,-4),
∴k=xy=-1×(-4)=4.
∴反比例函数的解析式为y=
4
x

又∵点M在y=
4
x
的图象上,
∴m=2.
∴M(2,2).
又∵直线y=ax+b图象经过M,N,
2=2a+b
-4=-a+b

a=2
b=-2

∴一次函数的解析式为y=2x-2;

(2)由图象可知反比例函数的值>一次函数的值的x的取值范围是
x<-1或0<x<2.
点评:本题主要考查一次函数、反比例函数的图象和性质、待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力.解决此类问题的关键是灵活运用方程组,并综合运用以上知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案