【题目】已知二次函数
.
(1)该二次函数图象的对称轴是;
(2)若该二次函数的图象开口向上,当
时,函数图象的最高点为
,最低点为
,点
的纵坐标为
,求点
和点
的坐标;
(3)对于该二次函数图象上的两点
,
,设
,当
时,均有
,请结合图象,直接写出
的取值范围.
科目:初中数学 来源: 题型:
【题目】已知,在Rt△ABC中,∠ACB=90°,BC=4,AB=4
,点D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在P处.
(1)如图1,若点D是AC中点,连接PC.
①求AC的长;
②试猜想四边形BCPD的形状,并加以证明;
(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求CH的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点
从
出发以每秒2个单位长度的速度向
运动;点
从
同时出发,以每秒1个单位长度的速度向
运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点
作
垂直
轴于点
,连结AC交NP于Q,连结MQ.
![]()
【1】点 (填M或N)能到达终点;
【1】求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
【1】是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,
说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )
![]()
A. π-4 B.
π-1 C. π-2 D.
-2
【答案】C
【解析】试题解析:∵∠BAC=45°,
∴∠BOC=90°,
∴△OBC是等腰直角三角形,
∵OB=2,
∴△OBC的BC边上的高为:
OB=
,
∴BC=2![]()
∴S阴影=S扇形OBC﹣S△OBC=
.
故选C.
【题型】单选题
【结束】
10
【题目】夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为( )
![]()
A.8m B.6.4m C.4.8m D.10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为“双二次方程”.这类方程我们一般可以通过换元法求解.如:求解2x4-5x2+3=0的解.
解:设
,则原方程可化为:
,解之得![]()
当
时,
, ∴
;
当
时
∴
.
综上,原方程的解为:
,
.
(1)通过上述阅读,请你求出方程
的解;
(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况,下列说法正确的是 (选出正确的答案).
①当b2-4ac≥0时,原方程一定有实数根;
②当b2-4ac<0时,原方程一定没有实数根;
③原方程无实数根时,一定有b2-4ac<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有
、
、
三张扑克牌,乙手中有
、
、
三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.
(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;
(2)求学生乙一局比赛获胜的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 ,为什么?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(3k+1)x+2k2+2k=0.
(1)求证:无论k取何实数值,方程总有实数根;
(2)若等腰△ABC的一边长a=6,另两边长b、c恰好是这个方程的两个根,求此三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的
倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_____秒,小亮回到B端.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com