精英家教网 > 初中数学 > 题目详情
如图,点P是双曲线(x>0)上一点,以点P为圆心,2为半径的圆与直线y=x的交点为A、B.
(1)当⊙P与x轴和y轴都相切时,求点P的坐标及双曲线的函数表达式;
(2)若点P在双曲线(x>0)上运动,当弦AB的长等于时,求点P的坐标.

【答案】分析:(1)根据已知得出点P到x轴和y轴的距离都是2,进而利用待定系数法求反比例函数解析式即可;
(2)根据当点P在直线l上方时,以及点P在直线l下方时,分别得出P点坐标即可.
解答:解:(1)∵⊙P与x轴和y轴都相切,半径为2,
∴点P到x轴和y轴的距离都是2,
∴点P(2,2),
∴2=
∴k=4,
∴双曲线的函数表达式为:y=

(2)设点P(m,n),
当点P在直线l上方时,
如图1,作PC⊥AB于点C,作PD⊥x轴于点D,PD与AB交于点E,连结PB,
∴C是AB中点,
∴BC=
∴PC===1,
∵点E在直线y=x上,
∴OD=ED=m,
∴∠OED=45°,
∴∠PEC=45°,
∴PE=PC=
∴n=PD=DE+PE=m+
∵点P在双曲线y=上,
∴mn=4,
∴m(m+)=4,
解得:m1=,m2=-2
∵点P在第一象限,
∴m=
∴n=2
∴点P(,2),
设点P(m,n),
点P在直线l下方时,
如图2,作PC⊥AB于点C,作PD⊥x轴于点D,PD与AB交于点E,连结PA,
∴C是AB中点,
∴AC=
∴PC===1,
∵点E在直线y=x上,
∴OD=ED=m,
∴∠OED=45°,
∴∠PEC=45°,
∴PE=PC=
∴n=PD=DE-PE=m-
∵点P在双曲线y=上,
∴mn=4,
∴m(m-)=4,
解得:m1=-,m2=2
∵点P在第一象限,
∴m=2
∴n=
∴点P(2),
∴综上所述,点P的坐标为(,2)或(2).
点评:此题主要考查了圆的综合应用以及相切的性质和反比例函数的性质等知识,利用数形结合以及分类讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点A是双曲线y=
8x
(x>0)上的一点,P为x轴正半轴上的一点,且点P的坐标为(4,0),将A点绕P点顺时针旋转90°,恰好落在此双曲线上的另一点B,则B点的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•萧山区模拟)如图,点P是双曲线y=
4
3
x
(x>0)上动点,在y轴上取点Q,使得以P、Q、O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q的坐标是
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是双曲线y=
4
x
(x>0)
上一个动点,点Q为线段OP的中点,则⊙Q的面积不可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通二模)如图,点A是双曲线y=
4
x
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为
y=-
4
x
y=-
4
x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M是双曲线y=
2
x
上一点,ME⊥y轴,MF⊥x轴,直线y=-x+m交坐标轴于A、B两点,交ME于C点,交MF于D点,则AD•BC=
2
2
2
2

查看答案和解析>>

同步练习册答案