精英家教网 > 初中数学 > 题目详情
已知m、n是等腰三角形的两条边,且m、n满足
m-8
+(n-6)2=0
,则这个三角形的周长是
 
分析:由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.
解答:解:∵
m-8
+(n-6)2=0,
∴m-8=0,n-6=0,
解得m=8,n=6,
当m=8作腰时,三边为8,8,6,符合三边关系定理,周长为:8+8+6=22,
当m=6作腰时,三边为8,6,6,符合三边关系定理,周长为:8+6+6=20.
故答案为:22或20.
点评:本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
底边
=
BC
AB
.容易知道一个角的大小与这个角的正对值也是相精英家教网互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad 60°的值为( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)对于0°<A<180°,∠A的正对值sad A的取值范围是
 

(3)已知sinα=
3
5
,其中α为锐角,试求sadα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区一模)通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,AB=AC,底角B的邻对记作canB,这时canB=
底边
=
BC
AB
,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:
(1)can30°=
3
3

(2)如图(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法中,正确的有(  )
①腰相等的两个等腰三角形全等;
②三角之比为3:4:5的三角形是直角三角形;
③在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是3<x<6;
④要了解一批灯管的使用寿命,从中选取了20只进行测试,在这个问题中20支灯管是样本容量;
⑤已知△ABC的三边长分别是a,b,c,且
a
b
+
a
c
=
b+c
b+c-a
,则△ABC一定是底边长为a的等腰三角形.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江杭州萧山区党湾镇初中八年级12月月考数学试卷(带解析) 题型:单选题

下列说法中,正确的有(     )
①腰相等的两个等腰三角形全等;②三角之比为3:4:5的三角形是直角三角形;③在中,AB=AC=x,BC=6,则腰长x的取值范围是3<x<6;④要了解一批灯管的使用寿命,从中选取了20只进行测试,在这个问题中20支灯管是样本容量;⑤已知的三边长分别是a、b、c,且,则一定是底边长为a的等腰三角形

A.0个  B.1个   C.2个   D.3个

查看答案和解析>>

科目:初中数学 来源:福建省模拟题 题型:解答题

如图,已知AB=AC,∠A=36有下面4个结论:是等腰三角
(1)判断其中正确的结论有_________.(填“代号”即可)
(2)从你认为是正确的结论中选一个加以证明

查看答案和解析>>

同步练习册答案