精英家教网 > 初中数学 > 题目详情

已知关于x的方程数学公式的解大于0,则a的取值范围是


  1. A.
    a>0
  2. B.
    a<0
  3. C.
    a>2
  4. D.
    a<2且a≠-2
D
分析:分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0列出关于a的不等式,求出不等式的解集即可得到a的范围.
解答:分式方程去分母得:x+a=-x+2,
解得:x=
根据题意得:>0且≠2,
解得:a<2,且a≠-2.
故选:D.
点评:此题考查了分式方程的解,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程(m+1)xm2+1+(m-2)x-1=0,问:
(1)m取何值时,它是一元二次方程并猜测方程的解;
(2)m取何值时,它是一元一次方程?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<数学公式
∴当k<数学公式时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2=数学公式=0,解得k=数学公式
检验知k=数学公式数学公式=0的解.
所以当k=数学公式时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:《第2章 一元二次方程》2010年创新题(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:《第23章 一元二次方程》2009年单元测试卷(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:2003年山东省潍坊市中考数学试卷(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

同步练习册答案