精英家教网 > 初中数学 > 题目详情
(2008•濮阳)如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)试探究,四边形BECF是什么特殊的四边形?
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)

【答案】分析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,根据四边相等的四边形是菱形即可判断;
(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.
解答:解:(1)四边形BECF是菱形.
证明:∵BC的垂直平分线为EF,
∴BF=FC,BE=EC,
∴∠1=∠3,
∵∠ACB=90°,
∴∠1+∠2=90°,∠3+∠A=90°,
∴∠2=∠A,
∴EC=AE,
又∵CF=AE,BE=EC
∴BE=EC=CF=BF,
∴四边形BECF是菱形.

(2)当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠1=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形.
点评:本题利用了:菱形的判定和性质及中垂线的性质、直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《反比例函数》(04)(解析版) 题型:填空题

(2008•濮阳)如图,直线y=kx-2(k>0)与双曲线y=在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积比是4:1,则k=   

查看答案和解析>>

科目:初中数学 来源:2008年河南省中考数学试卷(解析版) 题型:解答题

(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

查看答案和解析>>

科目:初中数学 来源:2008年河南省中考数学试卷(解析版) 题型:填空题

(2008•濮阳)如图,直线y=kx-2(k>0)与双曲线y=在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积比是4:1,则k=   

查看答案和解析>>

科目:初中数学 来源:2008年河南省南阳市南阳油田中考数学试卷(解析版) 题型:填空题

(2008•濮阳)如图,直线y=kx-2(k>0)与双曲线y=在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积比是4:1,则k=   

查看答案和解析>>

科目:初中数学 来源:2008年河南省南阳市南阳油田中考数学试卷(解析版) 题型:填空题

(2008•濮阳)如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是   

查看答案和解析>>

同步练习册答案