精英家教网 > 初中数学 > 题目详情

如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切与点B,连接BA并延长交⊙A于点D,交ON于点E.

(1)求证:ON是⊙A的切线;

(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)

 

 

【答案】

(1)见解析    (2)

【解析】

试题分析:(1)首先过点A作AF⊥ON于点F,易证得AF=AB,即可得ON是⊙A的切线;

(2)由∠MON=60°,AB⊥OM,可求得AF的长,又由S阴影=SAEF﹣S扇形ADF,即可求得答案。 

解:(1)证明:过点A作AF⊥ON于点F,

∵⊙A与OM相切与点B,∴AB⊥OM。

∵OC平分∠MON,∴AF=AB=2。

∴ON是⊙A的切线。

(2)∵∠MON=60°,AB⊥OM,∴∠OEB=30°。

∴AF⊥ON。∴∠FAE=60°。

在Rt△AEF中,

∴EF=AF•tan60°=2

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D、则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND、其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有(  )
A.1个B.2个C.3个D.4个
精英家教网

查看答案和解析>>

科目:初中数学 来源:月考题 题型:单选题

如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN 交OP于点D.则①PM=PN,②MO=ON,③OP⊥MN,④MD=ND.其中正确的有

A. 1个
B. 2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案