精英家教网 > 初中数学 > 题目详情

已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.

(1)求含有常数a的抛物线的解析式;

(2)设点P是抛物线任意一点,过PPHx轴,垂足是H,求证:PD = PH

(3)设过原点O的直线l与抛物线在第一象限相交于AB两点,若DA=2DB,且SABD = 4,求a的值.

解:(1)设抛物线的解析式为y=kx2+a                

            ∵点D(2a,2a)在抛物线上,

            4a2k+a = 2a     ∴k =                      

            ∴抛物线的解析式为y= x2+a                

       (2)设抛物线上一点Pxy),过PPHx轴,PGy轴,在Rt△GDP中,

            由勾股定理得:PD2=DG2+PG2=(y–2a)2+x2 =y2 – 4ay+4a2+x2    

                                                          

           ∵y= x2+a  ∴x2 = 4a ´ (ya)= 4ay– 4a2     (6分)

           ∴PD 2= y2– 4ay+4a2 +4ay– 4a2= y2 =PH2

           ∴PD = PH 

       (3)过BBE x轴,AFx轴.

            由(2)的结论:BE=DB  AF=DA

            ∵DA=2DB  ∴AF=2BE  ∴AO = 2BO

            ∴BOA的中点,

            ∴COD的中点,

          连结BC

          ∴BC=  =  = BE = DB              

          过BBRy轴,

          ∵BRCD   ∴CR=DROR= a +  =  ,

          ∴B点的纵坐标是,又点B在抛物线上,

          ∴ = x2+a   ∴x2 =2a2

          ∵x>0      ∴x = a

          ∴B (a )                         

           AO = 2OB, ∴SABD=SOBD = 4

         所以,´2a´a= 4

         ∴a2= 4   ∵a>0  ∴a = 2             

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据下列条件,分别求出对应的二次函数关系式.
(1)已知抛物线的顶点是(-1,-2),且过点(1,10);
(2)已知抛物线过三点:(0,-2),(1,0),(2,3).

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知抛物线的顶点是M(1,16),且与x轴交于A,B两点(A在B的左边),若AB=8,求该抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH丄x轴.垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在笫一象限相交于A、B两点,若DA=2DB.且S△ABD=4
2
.求a的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点是(-1,-2),且过点(1,10).求此抛物线对应的二次函数关系式
y=3x2+6x+1
y=3x2+6x+1

查看答案和解析>>

科目:初中数学 来源: 题型:

根据下列条件,求出二次函数的关系式.已知抛物线的顶点是(-1,-2),且过点(1,10).

查看答案和解析>>

同步练习册答案