分析 (1)由点A、B、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;
(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.
解答 解:(1)由题意点A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,
得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线的解析式为y=x2-4x+3.
(2)设点M的坐标为(m,m2-4m+3),设直线BC的解析式为y=kx+3,
把点点B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=-1,
∴直线BC的解析式为y=-x+3.
∵MN∥y轴,
∴点N的坐标为(m,-m+3).
∵抛物线的解析式为y=x2-4x+3=(x-2)2-1,
∴抛物线的对称轴为x=2,
∴点(1,0)在抛物线的图象上,
∴1<m<3.
∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-(m-$\frac{3}{2}$)2+$\frac{9}{4}$,
∴当m=$\frac{3}{2}$时,线段MN取最大值,最大值为 $\frac{9}{4}$.
(3)假设存在.设点P的坐标为(2,n).
当m=$\frac{3}{2}$时,点N的坐标为( $\frac{3}{2}$,$\frac{3}{2}$),
∴PB=$\sqrt{(2-3)^{2}+(n-0)^{2}}$=$\sqrt{1+{n}^{2}}$,PN=$\sqrt{(2-\frac{3}{2})^{2}+(n-\frac{3}{2})^{2}}$,BN=$\sqrt{(3-\frac{3}{2})^{2}+(0-\frac{3}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$.
△PBN为等腰三角形分三种情况:
①当PB=BN时,即 $\sqrt{1+{n}^{2}}$=$\frac{3\sqrt{2}}{2}$,
解得:n=±$\frac{\sqrt{14}}{2}$,
此时点P的坐标为(2,-$\frac{\sqrt{14}}{2}$)或(2,$\frac{\sqrt{14}}{2}$).
②当PN=BN时,即 $\sqrt{(2-\frac{3}{2})^{2}+(n-\frac{3}{2})^{2}}$=$\frac{3\sqrt{2}}{2}$,
解得:n=$\frac{3±\sqrt{17}}{2}$,
此时点P的坐标为(2,$\frac{3-\sqrt{17}}{2}$)或(2,$\frac{3+\sqrt{17}}{2}$).
综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,-$\frac{\sqrt{14}}{2}$)或(2,$\frac{\sqrt{14}}{2}$)或(2,$\frac{3-\sqrt{17}}{2}$)或(2,$\frac{3+\sqrt{17}}{2}$).
点评 本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用配方法将二次函数解析式变形为顶点式,再结合二次函数的性质解决最值问题是关键.
科目:初中数学 来源: 题型:选择题
| A. | y=(x+2)2+4 | B. | y=(x-2)2-4 | C. | y=(x-2)2+4 | D. | y=(x+2)2-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 20° | B. | 25° | C. | 30° | D. | 40° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 11cm或5cm | B. | 5cm | C. | 11cm | D. | 11cm或3cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com