
(1)证明:由旋转性质得∠BAD=∠CAE,
∵AD=BD,
∴∠B=∠BAD,
∵AB=AC,
∴∠B=∠DCA;
∴∠CAE=∠DCA,
∴AE∥BC.
(2)解:四边形ABDE是平行四边形,
理由如下:
由旋转性质得AD=AE,
∵AD=BD,
∴AE=BD,
又∵AE∥BC,
∴四边形ABDE是平行四边形.
分析:(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.
(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.
点评:此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.